Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
1.
J Mech Behav Biomed Mater ; 145: 106034, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37494816

RESUMO

Microstructural and compositional changes that occur due to aging, pathological conditions, or pharmacological treatments alter cortical bone fracture resistance. However, the relative importance of these changes to the fracture resistance of cortical bone has not been quantified in detail. In this technical note, we developed an integrated experimental-computational framework utilizing human femoral cortical bone biopsies to advance the understanding of how fracture resistance of cortical bone is modulated due to modifications in its microstructure and material properties. Four human biopsy samples from individuals with varying fragility fracture history and osteoporosis treatment status were converted to finite element models incorporating specimen-specific material properties and were analyzed using fracture mechanics-based modeling. The results showed that cement line density and osteonal volume had a significant effect on crack volume. The removal of cement lines substantially increased the crack volume in the osteons and interstitial bone, representing straight crack growth, compared to models with cement lines due to the lack of crack deflection in the models without cement lines. Crack volume in the osteons and interstitial bone increased when mean elastic modulus and ultimate strength increased and mean fracture toughness decreased. Crack volume in the osteons and interstitial bone was reduced when material property heterogeneity was incorporated in the models. Although both the microstructure and the heterogeneity of the material properties of the cortical bone independently increased the fracture toughness, the relative contribution of the microstructure was more significant. The integrated experimental-computational framework developed here can identify the most critical microscale features of cortical bone modulated by pathological processes or pharmacological treatments that drive changes in fracture resistance and improve our understanding of the relative influence of microstructure and material properties on fracture resistance of cortical bone.


Assuntos
Fraturas Ósseas , Modelos Biológicos , Humanos , Análise de Elementos Finitos , Osso Cortical/patologia , Osso e Ossos/patologia , Fraturas Ósseas/patologia
2.
PLoS One ; 18(7): e0287825, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37418415

RESUMO

Individuals with type 2 diabetes mellitus (T2DM) have a higher fracture risk compared to those without T2DM despite having higher bone mineral density (BMD). Thus, T2DM may alter other aspects of resistance to fracture beyond BMD such as bone geometry, microarchitecture, and tissue material properties. We characterized the skeletal phenotype and assessed the effects of hyperglycemia on bone tissue mechanical and compositional properties in the TallyHO mouse model of early-onset T2DM using nanoindentation and Raman spectroscopy. Femurs and tibias were harvested from male TallyHO and C57Bl/6J mice at 26 weeks of age. The minimum moment of inertia assessed by micro-computed tomography was smaller (-26%) and cortical porosity was greater (+490%) in TallyHO femora compared to controls. In three-point bending tests to failure, the femoral ultimate moment and stiffness did not differ but post-yield displacement was lower (-35%) in the TallyHO mice relative to that in C57Bl/6J age-matched controls after adjusting for body mass. The cortical bone in the tibia of TallyHO mice was stiffer and harder, as indicated by greater mean tissue nanoindentation modulus (+22%) and hardness (+22%) compared to controls. Raman spectroscopic mineral:matrix ratio and crystallinity were greater in TallyHO tibiae than in C57Bl/6J tibiae (mineral:matrix +10%, p < 0.05; crystallinity +0.41%, p < 0.10). Our regression model indicated that greater values of crystallinity and collagen maturity were associated with reduced ductility observed in the femora of the TallyHO mice. The maintenance of structural stiffness and strength of TallyHO mouse femora despite reduced geometric resistance to bending could potentially be explained by increased tissue modulus and hardness, as observed at the tibia. Finally, with worsening glycemic control, tissue hardness and crystallinity increased, and bone ductility decreased in TallyHO mice. Our study suggests that these material factors may be sentinels of bone embrittlement in adolescents with T2DM.


Assuntos
Diabetes Mellitus Tipo 2 , Fraturas Ósseas , Camundongos , Masculino , Animais , Densidade Óssea/genética , Microtomografia por Raio-X , Dureza , Camundongos Endogâmicos C57BL , Modelos Animais de Doenças
3.
Spine (Phila Pa 1976) ; 48(14): 984-993, 2023 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-37036285

RESUMO

STUDY DESIGN: Prospective cross-sectional study. OBJECTIVE: To determine if an accumulation of advanced glycation endproducts (AGEs) is associated with impaired paraspinal muscle composition. BACKGROUND: Impaired bone integrity and muscle function are described as osteosarcopenia. Osteosarcopenia is associated with falls, fragility fractures, and reduced quality of life. Bone integrity is influenced by bone quantity (bone mineral density) and quality (microarchitecture and collagen). The accumulation of AGEs stiffens collagen fibers and increases bone fragility. The relationship between paraspinal muscle composition and bone collagen properties has not been evaluated. METHODS: Intraoperative bone biopsies from the posterior superior iliac spine were obtained and evaluated with multiphoton microscopy for fluorescent AGE cross-link density (fAGEs). Preoperative magnetic resonance imaging measurements at level L4 included the musculus (m.) psoas and combined m. multifidus and m. erector spinae (posterior paraspinal musculature, PPM). Muscle segmentation on axial images (cross-sectional area, CSA) and calculation of a pixel intensity threshold method to differentiate muscle (functional cross-sectional area, fCSA) and intramuscular fat (FAT). Quantitative computed tomography was performed at the lumbar spine. Univariate and multivariable regression models were used to investigate associations between fAGEs and paraspinal musculature. RESULTS: One hundred seven prospectively enrolled patients (50.5% female, age 60.7 y, BMI 28.9 kg/m 2 ) were analyzed. In all, 41.1% and 15.0% of the patients demonstrated osteopenia and osteoporosis, respectively. Univariate linear regression analysis demonstrated a significant association between cortical fAGEs and CSA in the psoas (ρ=0.220, P =0.039) but not in the PPM. Trabecular fAGEs revealed no significant associations to PPM or psoas musculature. In the multivariable analysis, higher cortical fAGEs were associated with increased FAT (ß=1.556; P =0.002) and CSA (ß=1.305; P =0.005) in the PPM after adjusting for covariates. CONCLUSION: This is the first investigation demonstrating that an accumulation of nonenzymatic collagen cross-linking product fAGEs in cortical bone is associated with increased intramuscular fat in the lumbar paraspinal musculature.


Assuntos
Densidade Óssea , Dor Lombar , Humanos , Feminino , Pessoa de Meia-Idade , Masculino , Músculos Paraespinais/diagnóstico por imagem , Músculos Paraespinais/patologia , Estudos Prospectivos , Qualidade de Vida , Estudos Transversais , Dor Lombar/patologia , Vértebras Lombares/diagnóstico por imagem , Vértebras Lombares/patologia , Imageamento por Ressonância Magnética/métodos , Produtos Finais de Glicação Avançada
4.
Eur Spine J ; 32(5): 1678-1687, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36922425

RESUMO

PURPOSE: The sole determination of volumetric bone mineral density (vBMD) is insufficient to evaluate overall bone integrity. The accumulation of advanced glycation endproducts (AGEs) stiffens and embrittles collagen fibers. Despite the important role of AGEs in bone aging, the relationship between AGEs and vBMD is poorly understood. We hypothesized that an accumulation of AGEs, a marker of impaired bone quality, is related to decreased vBMD. METHODS: Prospectively collected data of 127 patients undergoing lumbar fusion were analyzed. Quantitative computed tomography (QCT) measurements were performed at the lumbar spine. Intraoperative bone biopsies were obtained and analyzed with confocal fluorescence microscopy for fluorescent AGEs, both trabecular and cortical. Spearman's correlation coefficients were calculated to examine relationships between vBMD and fAGEs, stratified by sex. Multivariable linear regression analysis with adjustments for age, sex, body mass index (BMI), race, diabetes mellitus and HbA1c was used to investigate associations between vBMD and fAGEs. RESULTS: One-hundred and twenty-seven patients (51.2% female, 61.2 years, BMI of 28.7 kg/m2) with 107 bone biopsies were included in the final analysis, excluding patients on anti-osteoporotic drug therapy. In the univariate analysis, cortical fAGEs increased with decreasing vBMD at (r = -0.301; p = 0.030), but only in men. In the multivariable analysis, trabecular fAGEs increased with decreasing vBMD after adjusting for age, sex, BMI, race, diabetes mellitus and HbA1c (ß = 0.99;95%CI=(0.994,1.000); p = 0.04). CONCLUSION: QCT-derived vBMD measurements were found to be inversely associated with trabecular fAGEs. Our results enhance the understanding of bone integrity by suggesting that spine surgery patients with decreased bone quantity may also have poorer bone quality.


Assuntos
Densidade Óssea , Vértebras Lombares , Masculino , Humanos , Feminino , Hemoglobinas Glicadas , Vértebras Lombares/diagnóstico por imagem , Vértebras Lombares/cirurgia , Tomografia Computadorizada por Raios X/métodos , Envelhecimento
5.
Animals (Basel) ; 13(5)2023 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-36899684

RESUMO

Proximal sesamoid bone (PSB) fracture is the leading cause of fatal musculoskeletal injury in Thoroughbred racehorses in Hong Kong and the US. Efforts are underway to investigate diagnostic modalities that could help identify racehorses at increased risk of fracture; however, features associated with PSB fracture risk are still poorly understood. The objectives of this study were to (1) investigate third metacarpal (MC3) and PSB density and mineral content using dual-energy X-ray absorptiometry (DXA), computed tomography (CT), Raman spectroscopy, and ash fraction measurements, and (2) investigate PSB quality and metacarpophalangeal joint (MCPJ) pathology using Raman spectroscopy and CT. Forelimbs were collected from 29 Thoroughbred racehorse cadavers (n = 14 PSB fracture, n = 15 control) for DXA and CT imaging, and PSBs were sectioned for Raman spectroscopy and ash fraction measurements. Bone mineral density (BMD) was greater in MC3 condyles and PSBs of horses with more high-speed furlongs. MCPJ pathology, including palmar osteochondral disease (POD), MC3 condylar sclerosis, and MC3 subchondral lysis were greater in horses with more high-speed furlongs. There were no differences in BMD or Raman parameters between fracture and control groups; however, Raman spectroscopy and ash fraction measurements revealed regional differences in PSB BMD and tissue composition. Many parameters, including MC3 and PSB bone mineral density, were strongly correlated with total high-speed furlongs.

6.
Bone ; 169: 116678, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36646265

RESUMO

Spine fusion surgery is one of the most common orthopedic procedures, with over 400,000 performed annually to correct deformities and pain. However, complications occur in approximately one third of cases. While many of these complications may be related to poor bone quality, it is difficult to detect bone abnormalities prior to surgery. Areal BMD (aBMD) assessed by DXA may be artifactually high in patients with spine pathology, leading to missed diagnosis of deficits. In this study, we related preoperative imaging characteristics of both central and peripheral sites to direct measurements of bone quality in vertebral biopsies. We hypothesized that pre-operative imaging outcomes would relate to vertebral bone mineralization and collagen properties. Pre-operative assessments included DXA measurements of aBMD of the spine, hip, and forearm, central quantitative computed tomography (QCT) of volumetric BMD (vBMD) at the lumbar spine, and high resolution peripheral quantitative computed tomography (HRpQCT; Xtreme CT2) measurements of vBMD and microarchitecture at the distal radius and tibia. Bone samples were collected intraoperatively from the lumbar vertebrae and analyzed using Fourier-transform Infrared (FTIR) spectroscopy. Bone samples were obtained from 23 postmenopausal women (mean age 67 ± 7 years, BMI 28 ± 8 kg/m2). We found that patients with more mature bone by FTIR, measured as lower acid phosphate content and carbonate to phosphate ratio, and greater collagen maturity and mineral maturity/crystallinity (MMC), had greater cortical vBMD at the tibia and greater aBMD at the lumbar spine and one-third radius. Our data suggests that bone quality at peripheral sites may predict bone quality at the spine. As bone quality at the spine is challenging to assess prior to surgery, there is a great need for additional screening tools. Pre-operative peripheral bone imaging may provide important insight into vertebral bone quality and may foster identification of patients with bone quality deficits.


Assuntos
Densidade Óssea , Osso e Ossos , Humanos , Feminino , Pessoa de Meia-Idade , Idoso , Absorciometria de Fóton/métodos , Osso Cortical , Vértebras Lombares , Rádio (Anatomia)
7.
J Orthop Res ; 41(2): 345-354, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-35470915

RESUMO

Bone quality is increasingly being recognized in the assessment of fracture risk. Nonenzymatic collagen cross-linking with the accumulation of advanced glycation end products stiffens and embrittles collagen fibers thus increasing bone fragility. Echogenicity is an ultrasound (US) parameter that provides information regarding the skin collagen structure. We hypothesized that both skin and bone collagen degrade in parallel fashion. Prospectively collected data of 110 patients undergoing posterior lumbar fusion was analyzed. Preoperative skin US measurements were performed in the lumbar region to assess dermal thickness and echogenicity. Intraoperative bone biopsies from the posterior superior iliac spine were obtained and analyzed with confocal fluorescence microscopy for fluorescent advanced glycation endproducts (fAGEs). Pearson's correlation was calculated to examine relationships between  (1) US and fAGEs, and (2) age and fAGEs stratified by sex. Multivariable linear regression analysis with adjustments for age, sex, body mass index (BMI), diabetes mellitus, and hemoglobin A1c (HbA1c) was used to investigate associations between US and fAGEs. One hundred and ten patients (51.9% female, 61.6 years, BMI 29.8 kg/m2 ) were included in the analysis. In the univariate analysis cortical and trabecular fAGEs decreased with age, but only in women (cortical: r = -0.32, p = 0.031; trabecular: r = -0.32; p = 0.031). After adjusting for age, sex, BMI, diabetes mellitus, and HbA1c, lower dermal (ß = 1.01; p = 0.012) and subcutaneous (ß = 1.01; p = 0.021) echogenicity increased with increasing cortical fAGEs and lower dermal echogenicity increased with increasing trabecular fAGEs (ß = 1.01; p = 0.021). This is the first study demonstrating significant associations between skin US measurements and in vivo bone quality parameters in lumbar fusion patients. As a noninvasive assessment tool, skin US measurements might be incorporated into future practice to investigate bone quality in spine surgery patients.


Assuntos
Colágeno , Produtos Finais de Glicação Avançada , Humanos , Feminino , Masculino , Produtos Finais de Glicação Avançada/metabolismo , Hemoglobinas Glicadas , Colágeno/metabolismo , Ultrassonografia , Microscopia de Fluorescência , Densidade Óssea
8.
J Bone Miner Res ; 38(2): 261-277, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36478472

RESUMO

Individuals with type 2 diabetes mellitus (T2DM) have a greater risk of bone fracture compared with those with normal glucose tolerance (NGT). In contrast, individuals with impaired glucose tolerance (IGT) have a lower or similar risk of fracture. Our objective was to understand how progressive glycemic derangement affects advanced glycation endproduct (AGE) content, composition, and mechanical properties of iliac bone from postmenopausal women with NGT (n = 35, age = 65 ± 7 years, HbA1c = 5.8% ± 0.3%), IGT (n = 26, age = 64 ± 5 years, HbA1c = 6.0% ± 0.4%), and T2DM on insulin (n = 25, age = 64 ± 6 years, HbA1c = 9.1% ± 2.2%). AGEs were assessed in all samples using high-performance liquid chromatography to measure pentosidine and in NGT/T2DM samples using multiphoton microscopy to spatially resolve the density of fluorescent AGEs (fAGEs). A subset of samples (n = 14 NGT, n = 14 T2DM) was analyzed with nanoindentation and Raman microscopy. Bone tissue from the T2DM group had greater concentrations of (i) pentosidine versus IGT (cortical +24%, p = 0.087; trabecular +35%, p = 0.007) and versus NGT (cortical +40%, p = 0.003; trabecular +35%, p = 0.004) and (ii) fAGE cross-link density versus NGT (cortical +71%, p < 0.001; trabecular +44%, p < 0.001). Bone pentosidine content in the IGT group was lower than in the T2DM group and did not differ from the NGT group, indicating that the greater AGE content observed in T2DM occurs with progressive diabetes. Individuals with T2DM on metformin had lower cortical bone pentosidine compared with individuals not on metformin (-35%, p = 0.017). Cortical bone from the T2DM group was stiffer (+9%, p = 0.021) and harder (+8%, p = 0.039) versus the NGT group. Bone tissue AGEs, which embrittle bone, increased with worsening glycemic control assessed by HbA1c (Pen: R2  = 0.28, p < 0.001; fAGE density: R2  = 0.30, p < 0.001). These relationships suggest a potential mechanism by which bone fragility may increase despite greater tissue stiffness and hardness in individuals with T2DM; our results suggest that it occurs in the transition from IGT to overt T2DM. © 2022 American Society for Bone and Mineral Research (ASBMR).


Assuntos
Diabetes Mellitus Tipo 2 , Fraturas Ósseas , Intolerância à Glucose , Metformina , Humanos , Feminino , Pessoa de Meia-Idade , Idoso , Diabetes Mellitus Tipo 2/complicações , Insulina , Hemoglobinas Glicadas , Ílio , Dureza , Pós-Menopausa , Glucose , Glicemia
9.
Vet Surg ; 51(6): 952-962, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35672916

RESUMO

OBJECTIVE: To determine whether proximal sesamoid bone (PSB) microdamage and fracture toughness differ between Thoroughbred racehorses sustaining PSB fracture and controls. STUDY DESIGN: Cadaveric case-control. ANIMALS: Twenty-four Thoroughbred racehorses (n = 12 PSB fracture, n = 12 control). METHODS: Proximal sesamoid bones were dissected, and gross pathological changes and morphological measurements were documented. High-speed exercise history data were evaluated. Microdamage was assessed in fracture, fracture-contralateral limb (FXCL) and control PSBs using whole bone lead uranyl acetate (LUA) staining with micro-CT imaging or basic fuchsin histological analysis. Fracture toughness mechanical testing was carried out in 3-point-bending of microbeams created from PSB flexor cortices. Data were analyzed using ordinal logistic and linear regression models. RESULTS: Microdamage was detected most commonly in the articular subchondral region of PSBs via LUA micro-CT and basic fuchsin histology. There were no differences in microdamage between FXCL and control PSBs. Fracture toughness values were similar for FXCL (1.31 MPa√m) and control (1.35 MPa√m) PSBs. Exercise histories were similar except that horses sustaining fracture spent a greater percentage of their careers in rest weeks. CONCLUSION: Microdamage was detected in the articular region of PSBs but was not greater in horses sustaining catastrophic PSB fracture. Fracture toughness of PSB flexor cortices did not differ between FXCL and control PSBs. CLINICAL SIGNIFICANCE: Although uncommon, microdamage is localized to the articular region of Thoroughbred racehorse PSBs. Catastrophic PSB failure is not associated with lower PSB flexor cortex fracture toughness.


Assuntos
Fraturas Ósseas , Doenças dos Cavalos , Ossos Sesamoides , Animais , Estudos de Casos e Controles , Fraturas Ósseas/patologia , Fraturas Ósseas/veterinária , Doenças dos Cavalos/patologia , Cavalos , Humanos , Ossos Sesamoides/patologia , Microtomografia por Raio-X/veterinária
10.
J Bone Miner Res ; 37(4): 740-752, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35064941

RESUMO

Individuals with type 2 diabetes mellitus (T2DM) have an increased risk of fragility fracture despite exhibiting normal to high bone mineral density (BMD). Conditions arising from T2DM, such as reduced bone turnover and alterations in microarchitecture, may contribute to skeletal fragility by influencing bone morphology and microdamage accumulation. The objectives of this study were (i) to characterize the effect of T2DM on microdamage quantity and morphology in cancellous bone, and (ii) relate the accumulation of microdamage to the cancellous microarchitecture. Cancellous specimens from the femoral neck were collected during total hip arthroplasty (T2DM: n = 22, age = 65 ± 9 years, glycated hemoglobin [HbA1c] = 7.00% ± 0.98%; non-diabetic [non-DM]: n = 25, age = 61 ± 8 years, HbA1c = 5.50% ± 0.4%), compressed to 3% strain, stained with lead uranyl acetate to isolate microdamage, and scanned with micro-computed tomography (µCT). Individual trabeculae segmentation was used to isolate rod-like and plate-like trabeculae and their orientations with respect to the loading axis. The T2DM group trended toward a greater BV/TV (+27%, p = 0.07) and had a more plate-like trabecular architecture (+8% BVplates , p = 0.046) versus non-DM specimens. Rods were more damaged relative to their volume compared to plates in the non-DM group (DVrods /BVrods versus DVplates /BVplates : +49%, p < 0.0001), but this difference was absent in T2DM specimens. Longitudinal rods were more damaged in the non-DM group (DVlongitudinal rods /BVlongitudinal rods : +73% non-DM versus T2DM, p = 0.027). Total damage accumulation (DV/BV) and morphology (DS/DV) did not differ in T2DM versus non-DM specimens. These results provide evidence that cancellous microarchitecture does not explain fracture risk in T2DM, pointing to alterations in material matrix properties. In particular, cancellous bone from men with T2DM may have an attenuated ability to mitigate microdamage accumulation through sacrificial rods. © 2022 American Society for Bone and Mineral Research (ASBMR).


Assuntos
Osso Esponjoso , Diabetes Mellitus Tipo 2 , Idoso , Densidade Óssea , Osso Esponjoso/diagnóstico por imagem , Diabetes Mellitus Tipo 2/complicações , Colo do Fêmur/diagnóstico por imagem , Hemoglobinas Glicadas , Humanos , Masculino , Pessoa de Meia-Idade , Microtomografia por Raio-X
11.
Adv Eng Mater ; 23(7)2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34456625

RESUMO

Advances in additive manufacturing techniques have enabled the development of micro-architectured materials displaying a combination of low-density and lightweight structures with high specific strength and toughness. The mechanical performance of micro-architectured materials can be assessed using standard techniques; however, when studying low- and ultralow density micro-architectured materials, standard characterization techniques can be subject to experimental artifacts. Additionally, quantitative assessment and comparisons of microarchitectures with distinct lattice patterns is not always straightforward. Cancellous bone is a natural, ultralow density (porosity often exceeding 90%), irregular, cellular solid that has been thoroughly characterized in terms of micro-architecture and mechanical performance over the past 30 years. However, most the literature on cancellous bone mechanical properties and micro-structure-function relationships is in the medical literature and is not immediately accessible to materials designers. Here we provide a brief review of state-of-the-art approaches for characterizing the micro-architecture and mechanical performance of ultralow density cancellous bone, including methods of addressing experimental artifacts during mechanical characterization of ultralow density cellular solids, methods of quantifying microarchitecture, and currently understood structure-function relationships.

12.
Curr Opin Endocrinol Diabetes Obes ; 28(4): 360-370, 2021 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-34183538

RESUMO

PURPOSE OF REVIEW: Individuals with type 2 diabetes (T2D) are at increased risk of fracture, often despite normal bone density. This observation suggests deficits in bone quality in the setting of abnormal glucose homeostasis. The goal of this article is to review recent developments in our understanding of how advanced glycation end products (AGEs) are incorporated into the skeleton with resultant deleterious effects on bone health and structural integrity in patients with T2D. RECENT FINDINGS: The adverse effects of skeletal AGE accumulation on bone remodeling and the ability of the bone to deform and absorb energy prior to fracture have been demonstrated both at the bench as well as in small human studies; however, questions remain as to how these findings might be better explored in large, population-based investigations. SUMMARY: Hyperglycemia drives systemic, circulating AGE formation with subsequent accumulation in the bone tissue. In those with T2D, studies suggest that AGEs diminish fracture resistance, though larger clinical studies are needed to better define the direct role of longstanding AGE accumulation on bone strength in humans as well as to motivate potential interventions to reverse or disrupt skeletal AGE deposition with the goal of fracture prevention.


Assuntos
Remodelação Óssea , Diabetes Mellitus Tipo 2 , Fraturas Ósseas , Produtos Finais de Glicação Avançada , Densidade Óssea/fisiologia , Remodelação Óssea/fisiologia , Diabetes Mellitus Tipo 2/complicações , Diabetes Mellitus Tipo 2/fisiopatologia , Fraturas Ósseas/etiologia , Fraturas Ósseas/fisiopatologia , Produtos Finais de Glicação Avançada/fisiologia , Humanos
13.
J Clin Endocrinol Metab ; 106(8): 2233-2241, 2021 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-33999148

RESUMO

CONTEXT: Many individuals at high risk for osteoporosis and fragility fracture are never screened by traditional methods. Opportunistic use of imaging obtained for other clinical purposes is required to foster identification of these patients. OBJECTIVE: The aim of this pilot study was to evaluate texture features as a measure of bone fragility, by comparing clinically acquired magnetic resonance imaging (MRI) scans from individuals with and without a history of fragility fracture. METHODS: This study retrospectively investigated 100 subjects who had lumbar spine MRI performed at our institution. Cases (n = 50) were postmenopausal women with osteoporosis and a confirmed history of fragility fracture. Controls (n = 50) were age- and race-matched postmenopausal women with no known fracture history. Trabecular bone from the lumbar vertebrae was segmented to create regions of interest within which a gray level co-occurrence matrix was used to quantify the distribution and spatial organization of voxel intensity. Heterogeneity in the trabecular bone texture was assessed by several features, including contrast (variability), entropy (disorder), and angular second moment (homogeneity). RESULTS: Texture analysis revealed that trabecular bone was more heterogeneous in fracture patients. Specifically, fracture patients had greater texture variability (+76% contrast; P = 0.005), greater disorder (+10% entropy; P = 0.005), and less homogeneity (-50% angular second moment; P = 0.005) compared with controls. CONCLUSIONS: MRI-based textural analysis of trabecular bone discriminated between patients with known osteoporotic fractures and controls. Further investigation is required to validate this promising methodology, which could greatly expand the number of patients screened for skeletal fragility.


Assuntos
Densidade Óssea/fisiologia , Osso Esponjoso/diagnóstico por imagem , Osteoporose Pós-Menopausa/diagnóstico por imagem , Fraturas por Osteoporose/diagnóstico por imagem , Idoso , Idoso de 80 Anos ou mais , Feminino , Humanos , Imageamento por Ressonância Magnética , Pessoa de Meia-Idade , Projetos Piloto
14.
J Bone Miner Res ; 36(9): 1823-1834, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-33999456

RESUMO

Modifications to the constituents of the gut microbiome influence bone density and tissue-level strength, but the specific microbial components that influence tissue-level strength in bone are not known. Here, we selectively modify constituents of the gut microbiota using narrow-spectrum antibiotics to identify components of the microbiome associated with changes in bone mechanical and material properties. Male C57BL/6J mice (4 weeks) were divided into seven groups (n = 7-10/group) and had taxa within the gut microbiome removed through dosing with: (i) ampicillin; (ii) neomycin; (iii) vancomycin; (iv) metronidazole; (v) a cocktail of all four antibiotics together (with zero-calorie sweetener to ensure intake); (vi) zero-calorie sweetener only; or (vii) no additive (untreated) for 12 weeks. Individual antibiotics remove only some taxa from the gut, while the cocktail of all four removes almost all microbes. After accounting for differences in geometry, whole bone strength was reduced in animals with gut microbiome modified by neomycin (-28%, p = 0.002) and was increased in the group in which the gut microbiome was altered by sweetener alone (+39%, p < 0.001). Analysis of the fecal microbiota detected seven lower-ranked taxa differentially abundant in animals with impaired tissue-level strength and 14 differentially abundant taxa associated with increased tissue-level strength. Histological and serum markers of bone turnover and trabecular bone volume per tissue volume (BV/TV) did not differ among groups. These findings demonstrate that modifications to the taxonomic components of the gut microbiome have the potential to decrease or increase tissue-level strength of bone independent of bone quantity and without noticeable changes in bone turnover. © 2021 American Society for Bone and Mineral Research (ASBMR).


Assuntos
Microbioma Gastrointestinal , Animais , Densidade Óssea , Osso e Ossos , Fezes , Masculino , Camundongos , Camundongos Endogâmicos C57BL
16.
Calcif Tissue Int ; 109(1): 77-91, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33710382

RESUMO

Bone mineral carbonate content assessed by vibrational spectroscopy relates to fracture incidence, and mineral maturity/ crystallinity (MMC) relates to tissue age. As FT-IR and Raman spectroscopy become more widely used to characterize the chemical composition of bone in pre-clinical and translational studies, their bone mineral outcomes require improved validation to inform interpretation of spectroscopic data. In this study, our objectives were (1) to relate Raman and FT-IR carbonate:phosphate ratios calculated through direct integration of peaks to gold-standard analytical measures of carbonate content and underlying subband ratios; (2) to relate Raman and FT-IR MMC measures to gold-standard analytical measures of crystal size in chemical standards and native bone powders. Raman and FT-IR direct integration carbonate:phosphate ratios increased with carbonate content (Raman: p < 0.01, R2 = 0.87; FT-IR: p < 0.01, R2 = 0.96) and Raman was more sensitive to carbonate content than the FT-IR (Raman slope + 95% vs FT-IR slope, p < 0.01). MMC increased with crystal size for both Raman and FT-IR (Raman: p < 0.01, R2 = 0.76; FT-IR p < 0.01, R2 = 0.73) and FT-IR was more sensitive to crystal size than Raman (c-axis length: slope FT-IR MMC + 111% vs Raman MMC, p < 0.01). Additionally, FT-IR but not Raman spectroscopy detected differences in the relationship between MMC and crystal size of carbonated hydroxyapatite (CHA) vs poorly crystalline hydroxyapatites (HA) (slope CHA + 87% vs HA, p < 0.01). Combined, these results contribute to the ability of future studies to elucidate the relationships between carbonate content and fracture and provide insight to the strengths and limitations of FT-IR and Raman spectroscopy of native bone mineral.


Assuntos
Durapatita , Análise Espectral Raman , Carbonatos , Hidroxiapatitas , Espectroscopia de Infravermelho com Transformada de Fourier
17.
J Bone Miner Res ; 36(2): 334-346, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-32970898

RESUMO

The risk of fragility fracture increases for people with type 2 diabetes mellitus (T2DM), even after controlling for bone mineral density, body mass index, visual impairment, and falls. We hypothesize that progressive glycemic derangement alters microscale bone tissue composition. We used Fourier-transform infrared (FTIR) imaging to analyze the composition of iliac crest biopsies from cohorts of postmenopausal women characterized by oral glucose tolerance testing: normal glucose tolerance (NGT; n = 35, age = 65 ± 7 years, HbA1c = 5.8 ± 0.3%), impaired glucose tolerance (IGT; n = 26, age = 64 ± 5 years, HbA1c = 6.0 ± 0.4%), and overt T2DM on insulin (n = 25, age = 64 ± 6 years, HbA1c = 9.13 ± 0.6). The distributions of cortical bone mineral content had greater mean values (+7%) and were narrower (-10%) in T2DM versus NGT groups (p < 0.05). The distributions of acid phosphate, an indicator of new mineral, were narrower in cortical T2DM versus NGT and IGT groups (-14% and -14%, respectively) and in trabecular NGT and IGT versus T2DM groups (-11% and -10%, respectively) (all p < 0.05). The distributions of crystallinity were wider in cortical NGT versus T2DM groups (+16%) and in trabecular NGT versus T2DM groups (+14%) (all p < 0.05). Additionally, bone turnover was lower in T2DM versus NGT groups (P1NP: -25%, CTx: -30%, ucOC: -24%). Serum pentosidine was similar across groups. The FTIR compositional and biochemical marker values of the IGT group typically fell between the NGT and T2DM group values, although the differences were not always statistically significant. In summary, worsening glycemic control was associated with greater mineral content and narrower distributions of acid phosphate, an indicator of new mineral, which together are consistent with observations of lower turnover; however, wider distributions of mineral crystallinity were also observed. A more mineralized, less heterogeneous tissue may affect tissue-level mechanical properties and in turn degrade macroscale skeletal integrity. In conclusion, these data are the first evidence of progressive alteration of bone tissue composition with worsening glycemic control in humans. © 2020 American Society for Bone and Mineral Research (ASBMR).


Assuntos
Diabetes Mellitus Tipo 2 , Resistência à Insulina , Idoso , Glicemia , Osso e Ossos/diagnóstico por imagem , Feminino , Glucose , Controle Glicêmico , Humanos , Insulina , Pessoa de Meia-Idade , Pós-Menopausa
18.
Bone ; 139: 115490, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32569874

RESUMO

As the application of Raman spectroscopy to study bone has grown over the past decade, making it a peer technology to FTIR spectroscopy, it has become critical to understand their complimentary roles. Recent technological advancements have allowed these techniques to collect grids of spectra in a spatially resolved fashion to generate compositional images. The advantage of imaging with these techniques is that it allows the heterogenous bone tissue composition to be resolved and quantified. In this review we compare, for non-experts in the field of vibrational spectroscopy, the instrumentation and underlying physical principles of FTIR imaging (FTIRI) and Raman imaging. Additionally, we discuss the strengths and limitations of FTIR and Raman spectroscopy, address sample preparation, and discuss outcomes to provide researchers insight into which techniques are best suited for a given research question. We then briefly discuss previous applications of FTIRI and Raman imaging to characterize bone tissue composition and relationships of compositional outcomes with mechanical performance. Finally, we discuss emerging technical developments in FTIRI and Raman imaging which provide new opportunities to identify changes in bone tissue composition with disease, age, and drug treatment.


Assuntos
Osso e Ossos , Análise Espectral Raman , Osso e Ossos/diagnóstico por imagem , Diagnóstico por Imagem , Análise de Fourier , Espectroscopia de Infravermelho com Transformada de Fourier
19.
Calcif Tissue Int ; 106(3): 303-314, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31784772

RESUMO

Anti-resorptive and anabolic treatments can be used sequentially to treat osteoporosis, but their effects on bone composition are incompletely understood. Osteocytes may influence bone tissue composition with sequential therapies because bisphosphonates diffuse into the canalicular network and anabolic treatments increase osteocyte lacunar size. Cortical bone composition of osteopenic, ovariectomized (OVX) rats was compared to that of Sham-operated rats and OVX rats given monotherapy or sequential regimens of single approved anti-osteoporosis medications. Adult female Sprague-Dawley rats were OVX (N = 37) or Sham-OVXd (N = 6). After 2 months, seven groups of OVX rats were given three consecutive 3-month periods of treatment with vehicle (V), h-PTH (1-34) (P), alendronate (A), or raloxifene (R), using the following orders: VVV, PVV, RRR, RPR, AAA, AVA, and APA. Compositional properties around osteocyte lacunae of the left tibial cortex were assessed from Raman spectra in perilacunar and non-perilacunar bone matrix regions. Sequential treatments involving parathyroid hormone (PTH) caused lower mean collagen maturity relative to monotherapies. Mean mineral:matrix ratio was 2.2% greater, mean collagen maturity was 1.4% greater, and mean carbonate:phosphate ratio was 2.2% lower in the perilacunar than in the non-perilacunar bone matrix region (all P < 0.05). These data demonstrate cortical bone tissue composition differences around osteocytes caused by sequential treatment with anti-osteoporosis medications. We speculate that the region-specific differences demonstrate the ability of osteocytes to alter bone tissue composition adjacent to lacunae.


Assuntos
Alendronato/farmacologia , Conservadores da Densidade Óssea/farmacologia , Doenças Ósseas Metabólicas/tratamento farmacológico , Osso Cortical/efeitos dos fármacos , Cloridrato de Raloxifeno/farmacologia , Teriparatida/farmacologia , Alendronato/uso terapêutico , Animais , Conservadores da Densidade Óssea/uso terapêutico , Doenças Ósseas Metabólicas/metabolismo , Calcificação Fisiológica/efeitos dos fármacos , Colágeno/análise , Osso Cortical/química , Estrogênios/fisiologia , Feminino , Osteócitos/efeitos dos fármacos , Ovariectomia , Cloridrato de Raloxifeno/uso terapêutico , Ratos Sprague-Dawley , Teriparatida/uso terapêutico
20.
Curr Osteoporos Rep ; 17(6): 455-464, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31713179

RESUMO

PURPOSE OF REVIEW: Individuals with type 1 and type 2 diabetes mellitus (T1DM, T2DM) have an increased risk of bone fracture compared to non-diabetic controls that is not explained by differences in BMD, BMI, or falls. Thus, bone tissue fracture resistance may be reduced in individuals with DM. The purpose of this review is to summarize work that analyzes the effects of T1DM and T2DM on bone tissue compositional and mechanical properties. RECENT FINDINGS: Studies of clinical T2DM specimens revealed increased mineralization and advanced glycation endproduct (AGE) concentrations and significant relationships between mechanical performance and composition of cancellous bone. Specifically, in femoral cancellous tissue, compressive stiffness and strength increased with mineral content; and post-yield properties decreased with AGE concentration. In addition, cortical resistance to in vivo indentation (bone material strength index) was lower in patients with T2DM vs. age-matched non-diabetic controls, and this resistance decreased with worsening glycemic control. Recent studies on patients with T1DM and history of a prior fragility fracture found greater mineral content and concentrations of AGEs in iliac trabecular bone and correspondingly stiffer, harder bone at the nanosacle. Recent observational data showed greater AGE and mineral content in surgically retrieved bone from patients with T2DM vs. non-DM controls, consistent with reduced bone remodeling. Limited data on human T1DM bone tissue also showed higher mineral and AGE content in patients with prior fragility fractures compared to non-DM and non-fracture controls.


Assuntos
Remodelação Óssea , Osso e Ossos/fisiopatologia , Diabetes Mellitus Tipo 1/fisiopatologia , Diabetes Mellitus Tipo 2/fisiopatologia , Animais , Fenômenos Biomecânicos , Glicemia/metabolismo , Densidade Óssea , Osso e Ossos/diagnóstico por imagem , Osso e Ossos/metabolismo , Osso Esponjoso/diagnóstico por imagem , Osso Esponjoso/metabolismo , Osso Esponjoso/fisiopatologia , Osso Cortical/diagnóstico por imagem , Osso Cortical/metabolismo , Osso Cortical/fisiopatologia , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Experimental/fisiopatologia , Diabetes Mellitus Tipo 1/epidemiologia , Diabetes Mellitus Tipo 1/metabolismo , Diabetes Mellitus Tipo 2/epidemiologia , Diabetes Mellitus Tipo 2/metabolismo , Fraturas Ósseas/epidemiologia , Produtos Finais de Glicação Avançada/metabolismo , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA