Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 390
Filtrar
1.
Eur J Pharm Biopharm ; : 114481, 2024 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-39255921

RESUMO

Schizophrenia is a severe mental disorder that affects millions of people worldwide. Several atypical antipsychotic medications, including paliperidone (PPD), has been developed and proven effective in treating it. To date, four PPD extended-release products have been launched commercially, providing up to six months of therapeutic effect with a single administration. However, the need for hospital injections by professional healthcare workers not only lead to poor patients' adherence, but also put additional pressure on the healthcare system. Therefore, three PPD microarray patch (PPD MAP) systems based on dissolving microneedle technology and implantable microneedle technology were developed in this work. The two dissolving microarray patch systems contained either PPD crude drug (PPD DMAP-CD) or PPD nanocrystal (PPD DMAP-NC) and the implantable MAP contained PPD crude drug (PPD IMAP). All three types of PPD MAPs showed excellent mechanical and insertion properties as they achieved over 256 µm insertion depth in skin model. In vitro release study showed that PPD released from IMAP in a much more sustained manner (up to 14 days) than PPD did from DMAPs (7 days), with only 20 % initial burst release from IMAP compared with 43-71 % from DMAPs. The MAP dissolution study showed that both DMAPs can be immediately dissolved within less than 3 min once inserted into the skin, indicating a faster action potential compared with IMAP. Ex vivo delivery study showed that 1.68 ±â€¯0.23 mg, 1.39 ±â€¯0.07 mg, and 1.18 ±â€¯0.12 mg were delivered from DMAP-CD, DMAP-NC and IMAP, respectively, demonstrating that over 50 % and up to 70 % of PPD in the MAPs can be delivered into the skin. The IMAP offers most sustained release of PPD whereas DMAP-NC exhibits fastest PPD release (11.19 % vs 20.01 % into Franz cell receiver compartment over 24 h). This work presents a promising alternative for the sustained delivery of antipsychotic drugs, allowing for patient self-administration and extended release concurrently. Patients may potentially use both DMAP and IMAP to achieve a sustained release of PPD while also avoid having an initial therapeutic lag.

2.
Eur J Pharm Biopharm ; : 114495, 2024 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-39277118

RESUMO

Regenerative therapy based on stem cells have been developed, focusing on either stem cell delivery or secretome delivery. Most marketed cellular and gene therapy products are available as injectable dosage forms, leading to several limitations requiring alternative routes, such as the intradermal route. Microneedles, capable of penetratingthe stratum corneumbarrier, offer a potential alternative for intradermal delivery. This present study aimed to develop double-layer dissolving microneedles (DMN) for the delivery of freeze-dried mesenchymal stem cell secretome. DMNs were fabricated using a two-step casting method and composed of two polymer combinations: poly(vinyl pyrrolidone) (PVP) with poly(vinyl alcohol) (PVA) or PVP with sodium hyaluronate (SH). The manufactured DMNs underwent assessments for morphology, mechanical strength, in skin dissolution, protein content, in vitro permeation, in vivo skin irritation, and physical stability. Based on evaluations of morphology and mechanical strength, two formulas (F5 and F12) met acceptance criteria. Evaluation of protein content revealed that F12 (PVP-SH combination) had a higher protein content than F5 (PVP-PVA combination), 99.02 ±â€¯3.24 µg and 78.36 ±â€¯3.75 µg respectively. In vitro permeation studies showed that F5 delivered secretome protein by 100.84 ±â€¯0.88 %, while F12 delivered 99.63 ±â€¯9.21 % in 24 h. After four days of observation onSprague-Dawleyrat's skin, no signs of irritation, such as oedema and redness, was observed after applying both formulations. The safety of using PVP-PVA and PVP-SH combinations as excipients for DMN secretome delivery has been confirmed, promising significant advancements in biotherapeutic development in the future.

3.
Int J Pharm ; : 124710, 2024 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-39277153

RESUMO

Drug delivery routes play an essential role in determining the efficacy and safety of medications. This study focused on the development and optimization of 3D-printed reservoir type implants as a combinational therapy drug delivery system for Glioblastoma Multiforme (GBM) post-surgery, possessing also antibacterial properties. In this study, we used a multimodal agent, Acriflavine (ACF) as an alternative drug to treat GBM. To date, ACF is used only as an antiseptic agent, although it has been shown to possess strong anticancer activities. ACF and a low molecular weight PCL were loaded into 3D-printed reservoir-type implants for sustained drug delivery. The study demonstrated that ACF implants exhibited sustained drug release kinetics, with faster release during the initial 30 days, followed by a gradual decrease over 90 days. This controlled release profile enhances the effectiveness of ACF delivery to tumour targets while minimizing side effects associated with systemic administration. In vitro experiments confirmed the inhibitory activity of ACF against GBM cells compared to non-tumour cells. The study also highlighted the bacteriostatic effects of ACF, making the implants potentially useful for post-surgery infection management, particularly against S. aureus, a common bacterial infection associated with brain surgery. The long-term drug-release capabilities of the implants make them attractive candidates for both tumour inhibition and antibacterial treatment. The study suggests that the developed ACF delivery systems have the potential for future clinical studies. Their ability to provide increased drug efficacy without systemic toxicity makes them promising candidates for cancer therapy and post-surgery infection management.

4.
Int J Pharm ; : 124691, 2024 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-39278288

RESUMO

Hyperlipidemia and its associated cardiovascular complications are the major causes of mortality and disability worldwide. Simvastatin (SIM) is one of the most commonly prescribed lipid-lowering drugs for the treatment of hyperlipidemia by competitive inhibition of 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase. However, the extensive first-pass metabolism leading to low oral bioavailability and frequent daily doses may lead to poor patient compliance and adverse effects caused by plasma fluctuations. To overcome these challenges, this work purposed two microneedle (MN) delivery strategies for the potential enhancement of SIM delivery. Firstly, nanocrystal (NC) formulations of SIM were investigated, followed by incorporation into a trilayer dissolving microneedle (DMN) design. Furthermore, a novel effervescent powder-carrying MN (EMN) design was developed to enhance intradermal delivery by incorporating the effervescent agents into the drug powder. Both MN approaches exhibited significantly improved permeation and in-skin deposition ability in the Franz cell study, with the ex vivo delivery efficiency of 64.33 ±â€¯6.17 % and 40.11 ±â€¯4.53 % for EMNs and DMNs, respectively. Most importantly, in vivo studies using a female Sprague-Dawley rat model confirmed the successful delivery of SIM from NCs-loaded DMNs (Cmax = 287.39 ±â€¯106.82 ng/mL) and EMNs (Cmax = 203.05 ±â€¯17.07 ng/mL) and maintain therapeutically relevant plasma concentrations for 15 days following a single application. The enhanced bioavailabilities of DMNs and EMNs were 24.28 % and 103.82 %, respectively, which were both significantly higher than that of conventional oral administration.

5.
Eur J Pharm Biopharm ; : 114482, 2024 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-39278334

RESUMO

Microneedles offer a promising solution to enhancing dermal delivery of amniotic mesenchymal stem cell metabolite product (AMSC-MP), which contains hydrophilic protein components with high molecular weight, for the purposes of skin rejuvenation and improving human health. This study aimed to evaluate the physicochemical characteristics and in vivo efficacy of AMSC-MP-loaded microneedle patches for effectively regenerating skin tissues in UV-aging induced mice. Dissolving microneedle patches, composed of polyvinyl alcohol with an MW of 9-10 kDa and polyvinylpyrrolidone with an MW of 56 kDa, were fabricated using the double-casting method at three AMSC-MP concentrations: i.e., 30% (MN30), 25% (MN25), and 20% (MN20). The microneedles patches were then evaluated for morphological, mechanical resistance, and insertion properties. An ex vivo release study was also conducted using the Franz cell method, and in vivo efficacy and irritation were then determined through collagen density scores, fibroblast cell counts, and skin irritation studies of UV-aging induced mice. The AMSC-MP microneedles displayed a pyramidal shape with 500 µm sharp tips. Mechanical testing revealed that MN30 achieved its deepest insertion into Parafilm® M (447.44 ± 37.21 µm), while MN25 achieved its deepest insertion into full-thickness porcine skin (717.92 ± 25.40 µm). The study revealed a controlled EGF release for up to 24 hours, with MN20 exhibiting the highest deposition (55.94 ± 12.34%). These findings demonstrate the successful penetration of microneedles through the stratum corneum and viable epidermis. Collagen density scores and fibroblast cell counts were significantly higher in all microneedle formulations than the control, with MN30 having the highest values. Inflammatory cell counts indicated minimal presence suggesting non-irritation in the in vivo study. Dissolving microneedle patches exhibited favorable characteristics and efficiently delivered AMSC-MP with minimal potential for irritation, providing potential technology for delivering biological anti-aging agents for the purposes of fostering skin regeneration.

7.
J Control Release ; 374: 76-88, 2024 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-39111598

RESUMO

The retinoid fenretinide (FENR) is a promising compound for preventing breast cancer recurrence but faces challenges due to poor solubility and low bioavailability. This study explores the development of dissolving microneedles (MNs) containing FENR-loaded ethosomes for minimally invasive breast cancer chemoprevention, aiming to enhance local drug distribution. Ethosomes were formulated using ethanol, propylene glycol, soya lecithin, water, and polysorbate 80 micelles. MNs were created from poly(vinyl alcohol) and poly(vinylpyrrolidone) hydrogels by adding polymer powder directly into ethosomes suspensions, reducing manufacturing time and cost. Two methods were used to load ethosomes into high-density moulds: 1) only in the needle area, and 2) in both the needle area and baseplate. Dynamic light scattering confirmed nanostructures in the hydrogels and MNs. Micelle-based ethosomes dissolved MNs in 15 min, compared to 30 min for other MNs. Skin deposition studies showed greater drug deposition (up to 10 µg/patch) and enhanced skin permeation of FENR (up to 40 µg) with Method 2. In-vivo studies in rats demonstrated that oral administration resulted in plasma FENR levels below 10 ng/g in the first three hours, whereas MN administration delayed delivery, reaching a maximum plasma concentration of 52 ng/g at 48 h. Skin deposition of FENR from MNs decreased from 3 µg/g on day 1 to <0.3 µg/g by the last day. This study indicates that MNs are a potential minimally invasive dosage form for delivering FENR, offering a new approach for breast cancer chemoprevention.

8.
Int J Pharm ; 664: 124614, 2024 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-39168286

RESUMO

Deferasirox (DFS) is an oral iron chelator that is employed in retinal ailments as a neuroprotectant against retinal injury and thus has utility in treating disorders such as excitoneurotoxicity and age-related macular degeneration (AMD). However, the conventional oral route of administration can present several disadvantages, e.g., the need for more frequent dosing and the first-pass effect. Microneedles (MNs) are minimally invasive systems that can be employed for intrascleral drug delivery without pain and can advantageously replace intravitreal injections therapy (IVT) as well as conventional oral routes of delivery for DFS. In this study, DFS was formulated into a nanosuspension (NS) through wet media milling employing PVA as a stabilizer, which was successfully loaded into polymeric dissolving MNs. DFS exhibited a 4-fold increase in solubility in DFS-NS compared to that of pure DFS. Moreover, the DFS-NSs exhibited excellent short-term stability and enhanced thermal stability, as confirmed through thermogravimetric analysis (TGA) studies. The mechanical characterization of the DFS-NS loaded ocular microneedles (DFS-NS-OcMNs), revealed that the system was sufficiently strong for effective scleral penetration. Optical coherence tomography (OCT) images confirmed the insertion of 81.23 ± 7.35 % of the total height of the MN arrays into full-thickness porcine sclera. Scleral deposition studies revealed 64 % drug deposition after just 5 min of insertion from DFS-NS-loaded ocular microneedles (OcMNs), which was almost 5 times greater than the deposition from pure DFS-OcMNs. Furthermore, both DFS and DFS-NS-OcMN exhibited remarkable cell viability when evaluated on human retinal pigment (ARPE) cells, suggesting their safety and appropriateness for use in the human eye. Therefore, loading DFS-NS into novel MN devices is a promising technique for effectively delivering DFS to the posterior segment of the eye in a minimally invasive manner.


Assuntos
Deferasirox , Sistemas de Liberação de Medicamentos , Quelantes de Ferro , Agulhas , Deferasirox/administração & dosagem , Deferasirox/farmacocinética , Animais , Suínos , Quelantes de Ferro/administração & dosagem , Solubilidade , Suspensões , Esclera/metabolismo , Humanos , Epitélio Pigmentado da Retina/efeitos dos fármacos , Nanopartículas/administração & dosagem , Sobrevivência Celular/efeitos dos fármacos , Linhagem Celular , Administração Oftálmica , Microinjeções/métodos , Estabilidade de Medicamentos , Tomografia de Coerência Óptica
9.
Int J Pharm ; 665: 124642, 2024 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-39208953

RESUMO

As of 2023, more than 200 million people worldwide are living with osteoporosis. Oral bisphosphonates (BPs) are the primary treatment but can cause gastrointestinal (GI) side effects, reducing patient compliance. Microarray (MAP) technology has the potential to overcome GI irritation by facilitating the transdermal delivery of BPs. This study examines the delivery of alendronic acid (ALN) and risedronate sodium (RDN) using dissolving and hydrogel-forming MAPs for osteoporosis treatment. In vivo testing on osteoporotic female Sprague Dawley rats demonstrated the efficacy of MAPs, showing significant improvements in mean serum and bone alkaline phosphatase levels, bone volume, and porosity compared to untreated bilateral ovariectomy (OVX) controls. Specifically, MAP treatment increased mean bone volume to 55.04 ± 2.25 % versus 47.16 ± 1.71 % in OVX controls and reduced porosity to 44.30 ± 2.97 % versus 52.84 ± 1.70 % in the distal epiphysis of the femur. In the distal metaphysis, bone volume increased to 43.32 ± 3.24 % in MAP-treated rats compared to 24.31 ± 3.21 % in OVX controls, while porosity decreased to 55.39 ± 5.81 % versus 75.69 ± 3.21 % in OVX controls. This proof-of-concept study indicates that MAP technology has the potential to be a novel, patient-friendly alternative for weekly osteoporosis management.

10.
Eur J Pharm Biopharm ; 202: 114415, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39013492

RESUMO

Hydrogel-forming microneedle array patches (HFMAPs) are microneedles that create microconduits upon insertion and swelling in the skin, potentially allowing prolonged drug delivery without generating sharps waste. Delivering hydrophobic drugs using HFMAPs poses challenges, which can be addressed using solubility enhancers such as cyclodextrins (CDs). This study aimed to deliver risperidone (RIS) transdermally using HFMAPs. To enhance the aqueous solubility of RIS hydroxypropyl-beta-cyclodextrin (HP-ß-CD) and hydroxypropyl-gamma-cyclodextrin (HP-γ-CD) were utilised and their performance was tested using phase solubility studies. The aqueous solubility of RIS was enhanced by 4.75-fold and 2-fold using HP-ß-CD and HP-γ-CD, respectively. RIS-HP-ß-CD complex (CX) and physical mixture (PM) directly compressed tablets were prepared and combined with HFMAPs. Among the tested formulations, RIS-HP-ß-CD PM reservoirs with 11 x 11 PVA/PVP HFMAPs exhibited the best performance in ex vivo studies and were further evaluated in in vivo experiments using female Sprague Dawley rats. The extended wear time of the MAPs resulted in the sustained release of RIS and its active metabolite 9-hydroxyrisperidone (9-OH-RIS) in plasma samples, lasting from 3 to 5 days with a 1-day application and up to 10 days with a 5-day application. For a 1-day application, HFMAPs showed greater systemic exposure to RIS compared to intramuscular control (AUC0-t: 13330.05 ± 2759.95 ng/mL/hour versus 2706 ± 1472 ng/mL/hour). Moreover, RIS exposure was extended to 5 days (AUC0-t: 12292.37 ± 1801.94 ng/mL/hour). In conclusion, HFMAPs could serve as an alternative for delivering RIS in a sustained manner, potentially improving the treatment of schizophrenia.


Assuntos
2-Hidroxipropil-beta-Ciclodextrina , Administração Cutânea , Sistemas de Liberação de Medicamentos , Hidrogéis , Risperidona , Solubilidade , Risperidona/administração & dosagem , Risperidona/farmacocinética , Risperidona/química , Animais , Hidrogéis/química , Sistemas de Liberação de Medicamentos/métodos , Sistemas de Liberação de Medicamentos/instrumentação , 2-Hidroxipropil-beta-Ciclodextrina/química , Ratos , Agulhas , Ratos Sprague-Dawley , Absorção Cutânea , Ciclodextrinas/química , Antipsicóticos/administração & dosagem , Antipsicóticos/farmacocinética , Feminino , Pele/metabolismo
11.
Pharmaceutics ; 16(7)2024 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-39065643

RESUMO

Microarray patches (MAPs) offer a noninvasive and patient-friendly drug delivery method, suitable for self-administration, which is especially promising for low- and middle-income country settings. This study focuses on the development of dissolving bilayer MAPs loaded with norelgestromin (NGMN) as a first step towards developing a future potential drug delivery system for sustained hormonal contraception. The fabricated MAPs were designed with the appropriate needle lengths to penetrate the stratum corneum, while remaining minimally stimulating to dermal nociceptors. Ex vivo assessments showed that the MAPs delivered an average of 176 ± 60.9 µg of NGMN per MAP into excised neonatal porcine skin, representing 15.3 ± 5.3% of the loaded drug. In vivo pharmacokinetic analysis in Sprague Dawley rats demonstrated a Tmax of 4 h and a Cmax of 67.4 ± 20.1 ng/mL for the MAP-treated group, compared to a Tmax of 1 h and a Cmax of 700 ± 138 ng/mL for the intramuscular (IM) injection group, with a relative bioavailability of approximately 10% for the MAPs. The MAP-treated rats maintained plasma levels sufficient for therapeutic effects for up to 7 days after a single application. These results indicate the potential of NGMN-loaded dissolving bilayer MAPs, with further development focused on extending the release duration and improving bioavailability for prolonged contraceptive effects.

12.
Eur Radiol ; 2024 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-39044038

RESUMO

BACKGROUND: 18F-Fluorodeoxyglucose (FDG) PET/CT is emerging as a tool in the diagnosis and evaluation of pulmonary sarcoidosis, however, there is limited consensus regarding its diagnostic performance and prognostic value. METHOD: A meta-analysis was conducted with PubMed, Science Direct, MEDLINE, Scopus, and CENTRAL databases searched up to and including September 2023. 1355 studies were screened, with seventeen (n = 708 patients) suitable based on their assessment of the diagnostic performance or prognostic value of FDG-PET/CT. Study quality was assessed using the QUADAS-2 tool. Forest plots of pooled sensitivity and specificity were generated to assess diagnostic performance. Pooled changes in SUVmax were correlated with changes in pulmonary function tests (PFT). RESULTS: FDG-PET/CT in diagnosing suspected pulmonary sarcoidosis (six studies, n = 400) had a pooled sensitivity of 0.971 (95%CI 0.909-1.000, p = < 0.001) and specificity of 0.873 (95%CI 0.845-0.920)(one study, n = 169). Eleven studies for prognostic analysis (n = 308) indicated a pooled reduction in pulmonary SUVmax of 4.538 (95%CI 5.653-3.453, p = < 0.001) post-treatment. PFTs displayed improvement post-treatment with a percentage increase in predicted forced vital capacity (FVC) and diffusion capacity of the lung for carbon monoxide (DLCO) of 7.346% (95%CI 2.257-12.436, p = 0.005) and 3.464% (95%CI -0.205-7.132, p = 0.064), respectively. Reduction in SUVmax correlated significantly with FVC (r = 0.644, p < 0.001) and DLCO (r = 0.582, p < 0.001) improvement. CONCLUSION: In cases of suspected pulmonary sarcoidosis, FDG-PET/CT demonstrated good diagnostic performance and correlated with functional health scores. FDG-PET/CT may help to guide immunosuppression in cases of complex sarcoidosis or where treatment rationalisation is needed. CLINICAL RELEVANCE STATEMENT: FDG-PET/CT has demonstrated a high diagnostic performance in the evaluation of suspected pulmonary sarcoidosis with radiologically assessed disease activity correlating strongly with clinically derived pulmonary function tests. KEY POINTS: In diagnosing pulmonary sarcoidosis, FDG-PET/CT had a sensitivity and specificity of 0.971 and 0.873, respectively. Disease activity, as determined by SUVmax, reduced following treatment in all the included studies. Reduction in SUVmax correlated with an improvement in functional vital capacity, Diffusion Capacity of the Lungs for Carbon Monoxide, and subjective health scoring systems.

13.
J Control Release ; 372: 304-317, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38906420

RESUMO

Parkinson's disease (PD), affecting about ten million people globally, presents a significant health challenge. Rotigotine (RTG), a dopamine agonist, is currently administered as a transdermal patch (Neupro®) for PD treatment, but the daily application can be burdensome and cause skin irritation. This study introduces a combinatorial approach of dissolving microarray patch (MAP) and nanosuspension (NS) for the transdermal delivery of RTG, offering an alternative to Neupro®. The RTG-NS was formulated using a miniaturized media milling method, resulting in a nano-formulation with a mean particle size of 274.09 ± 7.43 nm, a PDI of 0.17 ± 0.04 and a zeta potential of -15.24 ± 2.86 mV. The in vitro dissolution study revealed an enhanced dissolution rate of the RTG-NS in comparison to the coarse RTG powder, under sink condition. The RTG-NS MAPs, containing a drug layer and a 'drug-free' supporting baseplate, have a drug content of 3.06 ± 0.15 mg/0.5 cm2 and demonstrated greater amount of drug delivered per unit area (∼0.52 mg/0.5 cm2) than Neupro® (∼0.20 mg/1 cm2) in an ex vivo Franz cell study using full-thickness neonatal porcine skin. The in vivo pharmacokinetic studies demonstrated that RTG-NS MAPs, though smaller (2 cm2 for dissolving MAPs and 6 cm2 for Neupro®), delivered drug levels comparable to Neupro®, indicating higher efficiency per unit area. This could potentially avoid unnecessarily high plasma levels after the next dose at 24 h, highlighting the benefits of dissolving MAPs over conventional transdermal patches in PD treatment.


Assuntos
Administração Cutânea , Agonistas de Dopamina , Nanopartículas , Absorção Cutânea , Tetra-Hidronaftalenos , Tiofenos , Adesivo Transdérmico , Animais , Tiofenos/administração & dosagem , Tiofenos/farmacocinética , Tiofenos/química , Tetra-Hidronaftalenos/administração & dosagem , Tetra-Hidronaftalenos/farmacocinética , Tetra-Hidronaftalenos/química , Agonistas de Dopamina/administração & dosagem , Agonistas de Dopamina/farmacocinética , Agonistas de Dopamina/química , Nanopartículas/química , Suínos , Suspensões , Pele/metabolismo , Liberação Controlada de Fármacos , Masculino , Solubilidade , Tamanho da Partícula
15.
Int J Pharm ; 660: 124317, 2024 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-38851410

RESUMO

Human immunodeficiency virus (HIV) continues to pose a serious threat to global health. Oral preexposure prophylaxis (PrEP), considered highly effective for HIV prevention, is the utilisation of antiretroviral (ARV) drugs before HIV exposure in high-risk uninfected individuals. However, ARV drugs are associated with poor patient compliance and pill fatigue due to their daily oral dosing. Therefore, an alternative strategy for drug delivery is required. In this work, two dissolving microneedle patches (MNs) containing either bictegravir (BIC) or tenofovir alafenamide (TAF) solid drug nanoparticles (SDNs) were developed for systemic delivery of a novel ARV regimen for potential HIV prevention. According to ex vivo skin deposition studies, approximately 11% and 50% of BIC and TAF was delivered using dissolving MNs, respectively. Pharmacokinetic studies in Sprague Dawley rats demonstrated that BIC MNs achieved a long-acting release profile, maintaining the relative plasma concentration above the 95% inhibitory concentration (IC95) for 3 weeks. For TAF MNs, a rapid release of drug and metabolism of TAF into TFV were obtained from the plasma samples. This work has shown that the proposed transdermal drug delivery platform could be potentially used as an alternative method to systemically deliver ARV drugs for HIV PrEP.


Assuntos
Administração Cutânea , Alanina , Fármacos Anti-HIV , Infecções por HIV , Agulhas , Profilaxia Pré-Exposição , Ratos Sprague-Dawley , Tenofovir , Animais , Tenofovir/administração & dosagem , Tenofovir/farmacocinética , Tenofovir/análogos & derivados , Alanina/farmacocinética , Alanina/administração & dosagem , Alanina/química , Fármacos Anti-HIV/administração & dosagem , Fármacos Anti-HIV/farmacocinética , Profilaxia Pré-Exposição/métodos , Infecções por HIV/prevenção & controle , Masculino , Adenina/administração & dosagem , Adenina/farmacocinética , Adenina/análogos & derivados , Adenina/química , Ratos , Nanopartículas/administração & dosagem , Nanopartículas/química , Liberação Controlada de Fármacos , Compostos Heterocíclicos de 4 ou mais Anéis/farmacocinética , Compostos Heterocíclicos de 4 ou mais Anéis/administração & dosagem , Compostos Heterocíclicos de 4 ou mais Anéis/química , Piridonas/administração & dosagem , Piridonas/farmacocinética , Sistemas de Liberação de Medicamentos , Piperazinas/farmacocinética , Piperazinas/administração & dosagem , Piperazinas/química , Ciclopropanos/administração & dosagem , Ciclopropanos/farmacocinética , Compostos Heterocíclicos com 3 Anéis/farmacocinética , Compostos Heterocíclicos com 3 Anéis/administração & dosagem , Amidas/administração & dosagem , Amidas/farmacocinética , Amidas/química
16.
Int J Pharm ; 660: 124342, 2024 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-38880253

RESUMO

Schizophrenia is a psychiatric disorder that results from abnormal levels of neurotransmitters in the brain. Risperidone (RIS) is a common drug prescribed for the treatment of schizophrenia. RIS is a hydrophobic drug that is typically administered orally or intramuscularly. Transdermal drug delivery (TDD) could potentially improve the delivery of RIS. This study focused on the development of RIS nanocrystals (NCs), for the first time, which were incorporated into dissolving microneedle array patches (DMAPs) to facilitate the drug delivery of RIS. RIS NCs were formulated via wet-media milling technique using poly(vinylalcohol) (PVA) as a stabiliser. NCs with particle size of 300 nm were produced and showed an enhanced release profile up to 80 % over 28 days. Ex vivo results showed that 1.16 ± 0.04 mg of RIS was delivered to both the receiver compartment and full-thickness skin from NCs loaded DMAPs compared to 0.75 ± 0.07 mg from bulk RIS DMAPs. In an in vivo study conducted using female Sprague Dawley rats, both RIS and its active metabolite 9-hydroxyrisperidone (9-OH-RIS) were detected in plasma samples for 5 days. In comparison with the oral group, DMAPs improved the overall pharmacokinetic profile in plasma with a âˆ¼ 15 folds higher area under the curve (AUC) value. This work has represented the novel delivery of the antipsychotic drug, RIS, through microneedles. It also offers substantial evidence to support the broader application of MAPs for the transdermal delivery of poorly water-soluble drugs.


Assuntos
Administração Cutânea , Antipsicóticos , Ratos Sprague-Dawley , Risperidona , Esquizofrenia , Animais , Risperidona/administração & dosagem , Risperidona/farmacocinética , Esquizofrenia/tratamento farmacológico , Feminino , Antipsicóticos/administração & dosagem , Antipsicóticos/farmacocinética , Adesivo Transdérmico , Nanopartículas/química , Nanopartículas/administração & dosagem , Liberação Controlada de Fármacos , Absorção Cutânea , Ratos , Sistemas de Liberação de Medicamentos , Pele/metabolismo , Álcool de Polivinil/química , Palmitato de Paliperidona/administração & dosagem , Palmitato de Paliperidona/farmacocinética , Tamanho da Partícula , Solubilidade , Agulhas
17.
Int J Pharm ; 660: 124347, 2024 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-38885777

RESUMO

Ropivacaine hydrochloride (RPL) is a local anesthetic agent that has been widely used for the treatment of pain during or after surgery. However, this drug is only available in parenteral dosage form and may contribute to the infiltration of RPL into the plasma, causing some undesirable side effects. Intradermal delivery of RPL using dissolving microneedles may become a promising strategy to deliver such drugs into the skin. This research aimed to develop RPL-loaded dissolving microneedles (DMN-RPLs) as a proof of the concept of intradermal delivery of a local anesthetic. The DMN-RPLs were fabricated using either centrifugation or air-pressurized chamber methods. Several polymers, such as poly(vinyl pyrrolidone) (PVP), poly(vinyl alcohol) (PVA), and sodium hyaluronate (SH), were utilized for manufacturing the DMN-RPLs. The prepared DMN-RPLs were assessed for their thermal properties, chemical bonds, mechanical strength, insertion ability, skin-dissolution study, and drug content. Furthermore, in-skin deposition and dermatokinetic studies were also performed. The results showed that F9 (30 % w/w PVP-4 % w/w SH) and F10 (30 % w/w PVP-5 % w/w PVA) containing 5 % w/w of RPL were the most promising formulations, as shown by their needle height reduction (<10 %) and insertion depth (∼400 µm). Both formulations were also able to deliver more than 60 % of the RPL contained in the DMNs into the epidermis, dermis, and receiver compartment. This study, for the first time, has provided a proof concept to deliver RPL as a local anesthetic using DMNs and the intradermal route, aiming to minimize pain and discomfort during administration and improve the patient's experience.


Assuntos
Anestésicos Locais , Sistemas de Liberação de Medicamentos , Agulhas , Ropivacaina , Pele , Ropivacaina/administração & dosagem , Ropivacaina/farmacocinética , Anestésicos Locais/administração & dosagem , Anestésicos Locais/farmacocinética , Anestésicos Locais/química , Animais , Pele/metabolismo , Administração Cutânea , Liberação Controlada de Fármacos , Absorção Cutânea , Povidona/química , Estudo de Prova de Conceito , Solubilidade , Ácido Hialurônico/química , Ácido Hialurônico/administração & dosagem , Microinjeções/métodos , Masculino , Ratos Sprague-Dawley , Álcool de Polivinil/química
18.
Pharmaceutics ; 16(5)2024 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-38794339

RESUMO

Levodopa (LD) has been the most efficacious medication and the gold standard therapy for Parkinson's disease (PD) for decades. However, its long-term administration is usually associated with motor complications, which are believed to be the result of the fluctuating pharmacokinetics of LD following oral administration. Duodopa® is the current option to offer a continuous delivery of LD and its decarboxylase inhibitor carbidopa (CD); however, its administration involves invasive surgical procedures, which could potentially lead to lifelong complications, such as infection. Recently, dissolving microarray patches (MAPs) have come to the fore as an alternative that can bypass the oral administration route in a minimally invasive way. This work explored the potential of using dissolving MAPs to deliver LD and CD across the skin. An acidic polymer poly(acrylic acid) (PAA) was used in the MAP fabrication to prevent the potential oxidation of LD at neutral pH. The drug contents of LD and CD in the formulated dissolving MAPs were 1.82 ± 0.24 and 0.47 ± 0.04 mg/patch, respectively. The in vivo pharmacokinetic study using female Sprague-Dawley® rats (Envigo RMS Holding Corp, Bicester, UK) demonstrated a simultaneous delivery of LD and CD and comparable AUC values between the dissolving MAPs and the oral LD/CD suspension. The relative bioavailability for the dissolving MAPs was calculated to be approximately 37.22%. Accordingly, this work highlights the use of dissolving MAPs as a minimally invasive approach which could potentially bypass the gastrointestinal pathway and deliver both drugs continuously without surgery.

19.
Mol Pharm ; 21(6): 2813-2827, 2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38752564

RESUMO

Psoriasis, affecting 2-3% of the global population, is a chronic inflammatory skin condition without a definitive cure. Current treatments focus on managing symptoms. Recognizing the need for innovative drug delivery methods to enhance patient adherence, this study explores a new approach using calcipotriol monohydrate (CPM), a primary topical treatment for psoriasis. Despite its effectiveness, CPM's therapeutic potential is often limited by factors like the greasiness of topical applications, poor skin permeability, low skin retention, and lack of controlled delivery. To overcome these challenges, the study introduces CPM in the form of nanosuspensions (NSs), characterized by an average particle size of 211 ± 2 nm. These CPM NSs are then incorporated into a trilayer dissolving microneedle patch (MAP) made from poly(vinylpyrrolidone) and w poly(vinyl alcohol) as needle arrays and prefrom 3D printed polylactic acid backing layer. This MAP features rapidly dissolving tips and exhibits good mechanical properties and insertion capability with delivery efficiency compared to the conventional Daivonex ointment. The effectiveness of this novel MAP was tested on Sprague-Dawley rats with imiquimod-induced psoriasis, demonstrating efficacy comparable to the marketed ointment. This innovative trilayer dissolving MAP represents a promising new local delivery system for calcipotriol, potentially revolutionizing psoriasis treatment by enhancing drug delivery and patient compliance.


Assuntos
Administração Cutânea , Calcitriol , Sistemas de Liberação de Medicamentos , Agulhas , Psoríase , Ratos Sprague-Dawley , Psoríase/tratamento farmacológico , Animais , Calcitriol/análogos & derivados , Calcitriol/administração & dosagem , Ratos , Sistemas de Liberação de Medicamentos/métodos , Absorção Cutânea/efeitos dos fármacos , Pele/metabolismo , Pele/efeitos dos fármacos , Pele/patologia , Tamanho da Partícula , Masculino , Nanopartículas/química , Imiquimode/administração & dosagem , Suspensões , Fármacos Dermatológicos/administração & dosagem , Fármacos Dermatológicos/farmacocinética , Adesivo Transdérmico
20.
J Control Release ; 371: 43-66, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38735395

RESUMO

Microneedles (MNs) are micron-sized needles, typically <2 mm in length, arranged either as an array or as single needle. These MNs offer a minimally invasive approach to ocular drug delivery due to their micron size (reducing tissue damage compared to that of hypodermic needles) and overcoming significant barriers in drug administration. While various types of MNs have been extensively researched, significant progress has been made in the use of hollow MNs (HMNs) for ocular drug delivery, specifically through suprachoroidal injections. The suprachoroidal space, situated between the sclera and choroid, has been targeted using optical coherence tomography-guided injections of HMNs for the treatment of uveitis. Unlike other MNs, HMNs can deliver larger volumes of formulations to the eye. This review primarily focuses on the use of HMNs in ocular drug delivery and explores their ocular anatomy and the distribution of formulations following potential HMN administration routes. Additionally, this review focuses on the influence of formulation characteristics (e.g., solution viscosity, particle size), HMN properties (e.g., bore or lumen diameter, MN length), and routes of administration (e.g., periocular transscleral, suprachoroidal, intravitreal) on the ocular distribution of drugs. Overall, this paper highlights the distinctive properties of HMNs, which make them a promising technology for improving drug delivery efficiency, precision, and patient outcomes in the treatment of ocular diseases.


Assuntos
Administração Oftálmica , Sistemas de Liberação de Medicamentos , Olho , Agulhas , Humanos , Animais , Olho/metabolismo , Preparações Farmacêuticas/administração & dosagem , Microinjeções/métodos , Microinjeções/instrumentação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA