Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Pathogens ; 13(2)2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38392916

RESUMO

We have characterized the intrahost genetic variation in the bovine leukemia virus (BLV) by examining 16 BLV isolates originating from the Western Siberia-Tyumen and South Ural-Chelyabinsk regions of Russia. Our research focused on determining the genetic composition of an 804 bp fragment of the BLV env gene, encoding for the entire gp51 protein. The results provide the first indication of the quasi-species genetic nature of BLV infection and its relevance for genome-level variation. Furthermore, this is the first phylogenetic evidence for the existence of a dual infection with BLV strains belonging to different genotypes within the same host: G4 and G7. We identified eight cases of recombination between these two BLV genotypes. The detection of quasi-species with cases of dual infection and recombination indicated a higher potential of BLV for genetic variability at the intra-host level than was previously considered.

2.
Viruses ; 15(9)2023 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-37766289

RESUMO

The pathology caused by three different isolates of lumpy skin disease virus, classical field cluster 1.2 strain Dagestan/2015, recombinant vaccine-like cluster 2.1 strain Saratov/2017, and cluster 2.2 strain Udmurtiya/2019, in cattle was compared from experimental infections. The infection of cattle was performed using intravenous administration of 2 mL of 105 TCID50/mL of each specific LSDV. Both classical and recombinant forms of LSDV cause pathological changes in the skin and lymph nodes, as well as the trachea and lungs. Due to circulatory disorders in the affected organs, multiple areas of tissue necrosis were observed, which, with the resurgence of secondary microflora, led to the development of purulent inflammation. Observed pathological changes caused by the recombinant vaccine-like strain Udmurtiya/2019 were characterized by a more pronounced manifestation of the pathoanatomical picture compared to the classical field strains Dagestan/2015 and Saratov/2017. Interestingly, Dagestan/2015 and Udmurtiya/2019 caused damage to the lymph nodes, characterized by serous inflammation and focal purulent lymphadenitis caused by purulent microflora. "Saratov/2017" did not cause pathology in the lymph nodes. All LSDVs were virulent and caused pathology, which was not distinguishable between viruses. This data set will serve as the experimentally validated basis for the comparative examination of novel LSDV strains in gross pathology.


Assuntos
Doenças Cardiovasculares , Doença Nodular Cutânea , Vírus da Doença Nodular Cutânea , Animais , Bovinos , Vírus da Doença Nodular Cutânea/genética , Administração Intravenosa , Inflamação
3.
Sci Rep ; 13(1): 2306, 2023 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-36759670

RESUMO

Coronaviruses (CoVs) pose a huge threat to public health as emerging viruses. Bat-borne CoVs are especially unpredictable in their evolution due to some unique features of bat physiology boosting the rate of mutations in CoVs, which is already high by itself compared to other viruses. Among bats, a meta-analysis of overall CoVs epizootiology identified a nucleic acid observed prevalence of 9.8% (95% CI 8.7-10.9%). The main objectives of our study were to conduct a qPCR screening of CoVs' prevalence in the insectivorous bat population of Fore-Caucasus and perform their characterization based on the metagenomic NGS of samples with detected CoV RNA. According to the qPCR screening, CoV RNA was detected in 5 samples, resulting in a 3.33% (95% CI 1.1-7.6%) prevalence of CoVs in bats from these studied locations. BetaCoVs reads were identified in raw metagenomic NGS data, however, detailed characterization was not possible due to relatively low RNA concentration in samples. Our results correspond to other studies, although a lower prevalence in qPCR studies was observed compared to other regions and countries. Further studies should require deeper metagenomic NGS investigation, as a supplementary method, which will allow detailed CoV characterization.


Assuntos
Quirópteros , Infecções por Coronavirus , Coronavirus , Animais , Coronavirus/genética , Infecções por Coronavirus/epidemiologia , Infecções por Coronavirus/veterinária , Infecções por Coronavirus/genética , Genoma Viral , Filogenia , RNA
4.
Front Vet Sci ; 9: 1001426, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36337212

RESUMO

Lumpy skin disease (LSD) caused by LSD virus (LSDV), is a member of the poxvirus genus Capripoxvirus. It is classified as a notifiable disease by the World Organization for Animal Health (WOAH) based on its potential for rapid spread and global economic impact. Due to these characteristics, the mode of LSDV transmission has prompted intensive research efforts. Previous experimental studies using the virulent vaccine-derived recombinant LSDV strain Saratov/2017, demonstrated that this strain has the capacity for transmission in a vector-proof environment. This study demonstrated that a second novel recombinant vaccine-derived LSDV strain Udmurtiya/2019, can infect bulls in contact with diseased animals, in the absence of insect vectors. Bulls were housed in an insect proof animal biosafety level 3 facility, where half the animals were inoculated intravenously with the recombinant LSDV (Udmurtiya/2019), whilst the remaining five animals were mock-inoculated but kept in contact with the inoculated group. Both the infected / inoculated group (IN) and uninfected / incontact group (IC), were monitored for 41 days with continuous registration of body temperature, observations for clinical signs and collection of blood samples and nasal swabs for testing of LSDV presence using real-time PCR. Results indicated that cohabitation of animals from both groups was sufficient to transmit the virus from the IN to the IC-group, with the onset of clinical signs including pyrexia (~41°C) and classical LSD nodular skin lesions starting at 10 dpi for the IN group and 16 dpi for the IC-group. Additionally, the presence of LSDV genomes as well as anti-LSDV antibodies were detected in swabs, blood and serum samples from animals belonging to both groups. These results provides additional evidence of LSDV transmission in a controlled environment without direct contact between diseased and healthy animals, yet in the absence of vectors. Based on these observations, the question concerning a hypothetical relation between mutations in the virus genome and its mode of transmission gains more importance and requires additional investigations with direct comparisons between classical and novel recombinant LSDV strains.

5.
Vet Microbiol ; 261: 109156, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34388682

RESUMO

Probiotics development for animal farming implies thorough testing of a vast variety of properties, including adhesion, toxicity, host cells signaling modulation, and immune effects. Being diverse, these properties are often tested individually and using separate biological models, with great emphasis on the host organism. Although being precise, this approach is cost-ineffective, limits the probiotics screening throughput and lacks informativeness due to the 'one model - one test - one property' principle. There is а solution coming from human-derived cells and in vitro systems, an extraordinary example of human models serving animal research. In the present review, we focus on the current outlooks of employing human-derived in vitro biological models in probiotics development for animal applications, examples of such studies and the analysis of concordance between these models and host-derived in vivo data. In our opinion, human-cells derived screening systems allow to test several probiotic properties at once with reasonable precision, great informativeness and less expenses and labor effort.


Assuntos
Criação de Animais Domésticos , Biomarcadores , Interações entre Hospedeiro e Microrganismos , Probióticos , Criação de Animais Domésticos/métodos , Criação de Animais Domésticos/tendências , Animais , Células Cultivadas , Interações entre Hospedeiro e Microrganismos/fisiologia , Humanos , Modelos Biológicos
6.
Animals (Basel) ; 11(7)2021 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-34209794

RESUMO

One of the main problems in the poultry industry is the search for a viable replacement for antibiotic growth promoters. This issue requires a "one health" approach because the uncontrolled use of antibiotics in poultry can lead to the development of antimicrobial resistance, which is a concern not only in animals, but for humans as well. One of the promising ways to overcome this challenge is found in probiotics due to their wide range of features and mechanisms of action for health promotion. Moreover, spore-forming probiotics are suitable for use in the poultry industry because of their unique ability, encapsulation, granting them protection from the harshest conditions and resulting in improved availability for hosts' organisms. This review summarizes the information on gastrointestinal tract microbiota of poultry and their interaction with commensal and probiotic spore-forming bacteria. One of the most important topics of this review is the absence of uniformity in spore-forming probiotic trials in poultry. In our opinion, this problem can be solved by the creation of standards and checklists for these kinds of trials such as those used for pre-clinical and clinical trials in human medicine. Last but not least, this review covers problems and challenges related to spore-forming probiotic manufacturing.

7.
PLoS One ; 8(3): e58705, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23527009

RESUMO

Recent studies have shown that bovine leukemia virus (BLV) sequences can be classified into seven distinct genotypes based on full gp51 sequence. This classification was based on available sequence data that mainly represented the BLV population that is circulating in cattle from the US and South America. In order to aid with a global perspective inclusion of data from Eastern Europe is required. In this study we examined 44 BLV isolates from different geographical regions of Poland, Belarus, Ukraine, and Russia. Phylogenetic analysis based on a 444bp fragment of env gene revealed that most of isolates belonged to genotypes 4 and 7. Furthermore, we confirmed the existence of a new genotype, genotype 8, which was highly supported by phylogenetic computations. A significant number of amino acid substitutions were found in the sequences of the studied Eastern European isolates, of which 71% have not been described previously. The substitutions encompassed mainly the C-part of the CD4+ epitope, zinc binding peptide region, CD8+ T cell epitope, and overlapping linear epitope E. These observations highlight the use of sequence data to both elucidate phylogenetic relationships and the potential effect on serological detection of geographically diverse isolates.


Assuntos
Vírus da Leucemia Bovina/genética , Sequência de Aminoácidos , Animais , Antígenos Virais/genética , Bovinos , Leucose Enzoótica Bovina/virologia , Epitopos/genética , Europa Oriental , Genes env , Variação Genética , Genótipo , Vírus da Leucemia Bovina/classificação , Vírus da Leucemia Bovina/isolamento & purificação , Dados de Sequência Molecular , Filogenia , Sibéria
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA