Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 108
Filtrar
1.
Front Immunol ; 15: 1384417, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38726013

RESUMO

Nipah virus (NiV) poses a significant threat to human and livestock populations across South and Southeast Asia. Vaccines are required to reduce the risk and impact of spillover infection events. Pigs can act as an intermediate amplifying host for NiV and, separately, provide a preclinical model for evaluating human vaccine candidate immunogenicity. The aim of this study was therefore to evaluate the immunogenicity of an mRNA vectored NiV vaccine candidate in pigs. Pigs were immunized twice with 100 µg nucleoside-modified mRNA vaccine encoding soluble G glycoprotein from the Malaysia strain of NiV, formulated in lipid nanoparticles. Potent antigen-binding and virus neutralizing antibodies were detected in serum following the booster immunization. Antibody responses effectively neutralized both the Malaysia and Bangladesh strains of NiV but showed limited neutralization of the related (about 80% amino acid sequence identity for G) Hendra virus. Antibodies were also capable of neutralizing NiV glycoprotein mediated cell-cell fusion. NiV G-specific T cell cytokine responses were also measurable following the booster immunization with evidence for induction of both CD4 and CD8 T cell responses. These data support the further evaluation of mRNA vectored NiV G as a vaccine for both pigs and humans.


Assuntos
Anticorpos Neutralizantes , Anticorpos Antivirais , Infecções por Henipavirus , Vírus Nipah , Vacinas Virais , Animais , Vírus Nipah/imunologia , Vírus Nipah/genética , Suínos , Infecções por Henipavirus/prevenção & controle , Infecções por Henipavirus/imunologia , Anticorpos Neutralizantes/imunologia , Anticorpos Neutralizantes/sangue , Vacinas Virais/imunologia , Vacinas Virais/administração & dosagem , Anticorpos Antivirais/sangue , Anticorpos Antivirais/imunologia , Doenças dos Suínos/imunologia , Doenças dos Suínos/prevenção & controle , Doenças dos Suínos/virologia , RNA Mensageiro/genética , RNA Mensageiro/imunologia , Imunogenicidade da Vacina , Imunização Secundária , Citocinas/imunologia , Vacinas Sintéticas/imunologia , Lipossomos , Nanopartículas
2.
Pathogens ; 13(3)2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38535562

RESUMO

Ovine herpesvirus 2 (OvHV-2) and bovine herpesvirus 4 (BoHV-4) are gamma herpesviruses that belong to the genera Macavirus and Rhadinovirus, respectively. As with all herpesviruses, both OvHV-2 and BoHV-4 express glycoprotein B (gB), which plays an essential role in the infection of host cells. In that context, it has been demonstrated that a BoHV-4 gB-null mutant is unable to infect host cells. In this study, we used homologous recombination to insert OvHV-2 ORF 8, encoding gB, into the BoHV-4 gB-null mutant genome, creating a chimeric BoHV-4 virus carrying and expressing OvHV-2 gB (BoHV-4∆gB/OvHV-2-gB) that was infectious and able to replicate in vitro. We then evaluated BoHV-4∆gB/OvHV-2-gB as a potential vaccine candidate for sheep-associated malignant catarrhal fever (SA-MCF), a fatal disease of ungulates caused by OvHV-2. Using rabbits as a laboratory model for MCF, we assessed the safety, immunogenicity, and efficacy of BoHV-4∆gB/OvHV-2-gB in an immunization/challenge trial. The results showed that while BoHV-4∆gB/OvHV-2-gB was safe and induced OvHV-2 gB-specific humoral immune responses, immunization conferred only 28.5% protection upon challenge with OvHV-2. Therefore, future studies should focus on alternative strategies to express OvHV-2 proteins to develop an effective vaccine against SA-MCF.

4.
FEMS Microbiol Ecol ; 99(12)2023 11 13.
Artigo em Inglês | MEDLINE | ID: mdl-37880979

RESUMO

Subclinical mastitis is one of the most widespread diseases affecting dairy herds with detrimental effects on animal health, milk productivity, and quality. Despite its multifactorial nature, the presence of pathogenic bacteria is regarded one of the main drivers of subclinical mastitis, causing a disruption of the homeostasis of the bovine milk microbial community. However, bovine milk microbiota alterations associated with subclinical mastitis still represents a largely unexplored research area. Therefore, the species-level milk microbiota of a total of 75 milk samples, collected from both healthy and subclinical mastitis-affected cows from two different stables, was deeply profiled through an ITS, rather than a traditional, and less informative, 16S rRNA gene microbial profiling. Surprisingly, the present pilot study not only revealed that subclinical mastitis is characterized by a reduced biodiversity of the bovine milk microbiota, but also that this disease does not induce standard alterations of the milk microbial community across stables. In addition, a flow cytometry-based total bacterial cell enumeration highlighted that subclinical mastitis is accompanied by a significant increment in the number of milk microbial cells. Furthermore, the combination of the metagenomic and flow cytometry approaches allowed to identify different potential microbial marker strictly correlated with subclinical mastitis across stables.


Assuntos
Mastite Bovina , Microbiota , Bovinos , Animais , Feminino , Humanos , Leite/microbiologia , RNA Ribossômico 16S/genética , Projetos Piloto , Mastite Bovina/microbiologia , Mastite Bovina/patologia , Microbiota/genética
5.
Eur J Pharm Sci ; 191: 106609, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-37838239

RESUMO

One of the strategies proposed for the neutralization of SARS-CoV-2 has been to synthetize small proteins able to act as a decoy towards the virus spike protein, preventing it from entering the host cells. In this work, the incorporation of one of these proteins, LCB1, within a spray-dried formulation for inhalation was investigated. A design of experiments approach was applied to investigate the optimal condition for the manufacturing of an inhalable powder. The lead formulation, containing 6% w/w of LCB1 as well as trehalose and L-leucine as excipients, preserved the physical stability of the protein and its ability to neutralize the virus. In addition, the powder had a fine particle fraction of 58.6% and a very high extra-fine particle fraction (31.3%) which could allow a peripheral deposition in the lung. The in vivo administration of the LCB1 inhalation powder showed no significant difference in the pharmacokinetic from the liquid formulation, indicating the rapid dissolution of the microparticles and the protein capability to translocate into the plasma. Moreover, LCB1 in plasma samples still maintained the ability to neutralize the virus. In conclusion, the optimized spray drying conditions allowed to obtain an inhalation powder able to preserve the protein biological activity, rendering it suitable for a systemic prevention of the viral infection via pulmonary administration.


Assuntos
Enzima de Conversão de Angiotensina 2 , COVID-19 , Humanos , Pós , SARS-CoV-2 , Tamanho da Partícula , Aerossóis e Gotículas Respiratórios , Administração por Inalação , Peptídeos/metabolismo , Pulmão/metabolismo , Inaladores de Pó Seco
6.
Front Immunol ; 14: 1197649, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37483612

RESUMO

Introduction: Bovine herpesvirus 4 (BoHV-4) is a bovine Rhadinovirus not associated with a specific pathological lesion or disease and experimentally employed as a viral vector vaccine. BoHV-4-based vector (BoHV-4-BV) has been shown to be effective in immunizing and protecting several animal species when systemically administrated through intramuscular, subcutaneous, intravenous, or intraperitoneal routes. However, whether BoHV-4-BV affords respiratory disease protection when administered intranasally has never been tested. Methods: In the present study, recombinant BoHV-4, BoHV-4-A-S-ΔRS-HA-ΔTK, was constructed to deliver an expression cassette for the SARS-CoV-2 spike glycoprotein, and its immunogenicity, as well as its capability to transduce cells of the respiratory tract, were tested in mice. The well-established COVID-19/Syrian hamster model was adopted to test the efficacy of intranasally administered BoHV-4-A-S-ΔRS-HA-ΔTK in protecting against a SARS-CoV-2 challenge. Results: The intranasal administration of BoHV-4-A-S-ΔRS-HA-ΔTK elicited protection against SARS-CoV-2, with improved clinical signs, including significant reductions in body weight loss, significant reductions in viral load in the trachea and lungs, and significant reductions in histopathologic lung lesions compared to BoHV-4-A-S-ΔRS-HA-ΔTK administered intramuscularly. Discussion: These results suggested that intranasal immunization with BoHV-4-BV induced protective immunity and that BoHV-4-BV could be a potential vaccine platform for the protection of other animal species against respiratory diseases.


Assuntos
COVID-19 , Herpesvirus Bovino 4 , Vacinas Virais , Animais , Camundongos , Cricetinae , COVID-19/prevenção & controle , SARS-CoV-2 , Administração Intranasal
7.
iScience ; 26(6): 106940, 2023 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-37275517

RESUMO

Humoral immunity is sensitive to evasion by SARS-CoV-2 mutants, but CD8 T cells seem to be more resistant to mutational inactivation. By a systematic analysis of 30 spike variant peptides containing the most relevant VOC and VOI mutations that have accumulated overtime, we show that in vaccinated and convalescent subjects, mutated epitopes can have not only a neutral or inhibitory effect on CD8 T cell recognition but can also enhance or generate de novo CD8 T cell responses. The emergence of these mutated T cell function enhancing epitopes likely reflects an epiphenomenon of SARS-CoV-2 evolution driven by antibody evasion and increased virus transmissibility. In a subset of individuals with weak and narrowly focused CD8 T cell responses selection of these heteroclitic-like epitopes may bear clinical relevance by improving antiviral protection. The functional enhancing effect of these peptides is also worth of consideration for the future development of new generation, more potent COVID-19 vaccines.

8.
Front Microbiol ; 14: 1171770, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37234529

RESUMO

Bovine herpesvirus 4 (BoHV-4) is a Gammaherpesvirus belonging to the Rhadinovirus genus. The bovine is BoHV-4's natural host, and the African buffalo is BoHV-4's natural reservoir. In any case, BoHV-4 infection is not associated with a specific disease. Genome structure and genes are well-conserved in Gammaherpesvirus, and the orf 45 gene and its product, ORF45, are one of those. BoHV-4 ORF45 has been suggested to be a tegument protein; however, its structure and function have not yet been experimentally characterized. The present study shows that BoHV-4 ORF45, despite its poor homology with other characterized Rhadinovirus ORF45s, is structurally related to Kaposi's sarcoma-associated herpesvirus (KSHV), is a phosphoprotein, and localizes in the host cell nuclei. Through the generation of an ORF45-null mutant BoHV-4 and its pararevertant, it was possible to demonstrate that ORF45 is essential for BoHV-4 lytic replication and is associated with the viral particles, as for the other characterized Rhadinovirus ORF45s. Finally, the impact of BoHV-4 ORF45 on cellular transcriptome was investigated, an aspect poorly explored or not at all for other Gammaherpesvirus. Many cellular transcriptional pathways were found to be altered, mainly those involving p90 ribosomal S6 kinase (RSK) and signal-regulated kinase (ERK) complex (RSK/ERK). It was concluded that BoHV-4 ORF45 has similar characteristics to those of KSHV ORF45, and its unique and incisive impact on the cell transcriptome paves the way for further investigations.

9.
Molecules ; 28(8)2023 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-37110819

RESUMO

The development of very efficient and safe non-viral vectors, constituted mainly by cationic lipids bearing multiple charges, is a landmark for in vivo gene-based medicine. To understand the effect of the hydrophobic chain's length, we here report the synthesis, and the chemico-physical and biological characterization, of a new term of the homologous series of hydrogenated gemini bispyridinium surfactants, the 1,1'-bis-dodecyl-2,2'-hexane-1,6-diyl-bispyridinium chloride (GP12_6). Moreover, we have collected and compared the thermodynamic micellization parameters (cmc, changes in enthalpy, free energy, and entropy of micellization) obtained by isothermal titration calorimetry (ITC) experiments for hydrogenated surfactants GP12_6 and GP16_6, and for the partially fluorinated ones, FGPn (where n is the spacer length). The data obtained for GP12_6 by EMSA, MTT, transient transfection assays, and AFM imaging show that in this class of compounds, the gene delivery ability strictly depends on the spacer length but barely on the hydrophobic tail length. CD spectra have been shown to be a useful tool to verify the formation of lipoplexes due to the presence of a "tail" in the 288-320 nm region attributed to a chiroptical feature named ψ-phase. Ellipsometric measurements suggest that FGP6 and FGP8 (showing a very interesting gene delivery activity, when formulated with DOPE) act in a very similar way, and dissimilar from FGP4, exactly as in the case of transfection, and confirm the hypothesis suggested by previously obtained thermodynamic data about the requirement of a proper length of the spacer to allow the molecule to form a sort of molecular tong able to intercalate DNA.


Assuntos
Cloretos , Hexanos , Técnicas de Transferência de Genes , Tensoativos/química
10.
Am J Physiol Lung Cell Mol Physiol ; 324(2): L211-L227, 2023 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-36625471

RESUMO

The development of new drugs for idiopathic pulmonary fibrosis strongly relies on preclinical experimentation, which requires the continuous improvement of animal models and integration with in vivo imaging data. Here, we investigated the lung distribution of bleomycin (BLM) associated with the indocyanine green (ICG) dye by fluorescence imaging. A long-lasting lung retention (up to 21 days) was observed upon oropharyngeal aspiration (OA) of either ICG or BLM + ICG, with significantly more severe pulmonary fibrosis, accompanied by the progressive appearance of emphysema-like features, uniquely associated with the latter combination. More severe and persistent lung fibrosis, together with a progressive air space enlargement uniquely associated with the BLM + ICG group, was confirmed by longitudinal micro-computed tomography (CT) and histological analyses. Multiple inflammation and fibrosis biomarkers were found to be increased in the bronchoalveolar lavage fluid of BLM- and BLM + ICG-treated animals, but with a clear trend toward a much stronger increase in the latter group. Similarly, in vitro assays performed on macrophage and epithelial cell lines revealed a significantly more marked cytotoxicity in the case of BLM + ICG-treated mice. Also unique to this group was the synergistic upregulation of apoptotic markers both in lung sections and cell lines. Although the exact mechanism underlying the more intense lung fibrosis phenotype with emphysema-like features induced by BLM + ICG remains to be elucidated, we believe that this combination treatment, whose overall effects more closely resemble the human disease, represents a valuable alternative model for studying fibrosis development and for the identification of new antifibrotic compounds.


Assuntos
Enfisema , Fibrose Pulmonar Idiopática , Enfisema Pulmonar , Humanos , Camundongos , Animais , Bleomicina , Microtomografia por Raio-X , Pulmão/diagnóstico por imagem , Pulmão/patologia , Enfisema Pulmonar/induzido quimicamente , Enfisema Pulmonar/diagnóstico por imagem , Enfisema Pulmonar/patologia , Líquido da Lavagem Broncoalveolar , Fibrose Pulmonar Idiopática/induzido quimicamente , Fibrose Pulmonar Idiopática/diagnóstico por imagem , Fibrose Pulmonar Idiopática/patologia , Enfisema/patologia , Modelos Animais de Doenças , Camundongos Endogâmicos C57BL
11.
Oncoimmunology ; 11(1): 2120275, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36105747

RESUMO

The humoral and cellular response to SARS-CoV-2 mRNA full vaccination and booster dose as well as the impact of the spike variants, including Omicron, are still unclear in patients with multiple myeloma (MM) and those with pre-malignant monoclonal gammopathies. In this study, involving 40 patients, we found that MM patients with relapsed-refractory disease (MMR) had reduced spike-specific antibody levels and neutralizing titers after SARS-CoV-2 vaccination. The five analyzed variants, remarkably Omicron, had a significant negative impact on the neutralizing ability of the vaccine-induced antibodies in all patients with MM and smoldering MM. Moreover, lower spike-specific IL-2-producing CD4+ T cells and reduced cytotoxic spike-specific IFN-γ and TNF-α-producing CD8+ T cells were found in MM patients as compared to patients with monoclonal gammopathy of undetermined significance. We found that a heterologous booster immunization improved SARS-CoV-2 spike humoral and cellular responses in newly diagnosed MM (MMD) patients and in most, but not all, MMR patients. After the booster dose, a significant increase of the neutralizing antibody titers against almost all the analyzed variants was achieved in MMD. However, in MMR patients, Omicron retained a negative impact on neutralizing ability, suggesting further approaches to potentiating the effectiveness of SARS-CoV-2 vaccination in these patients.


Assuntos
COVID-19 , Mieloma Múltiplo , Vacinas Virais , Anticorpos Antivirais , Linfócitos T CD8-Positivos , COVID-19/prevenção & controle , Vacinas contra COVID-19 , Humanos , Imunidade , RNA Mensageiro , SARS-CoV-2 , Vacinação , Vacinas Virais/genética
12.
Front Immunol ; 13: 958123, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36032169

RESUMO

Polycationic resurfaced proteins hold great promise as cell-penetrating bioreagents but their use as carriers for the intracellular delivery of peptide immuno-epitopes has not thus far been explored. Here, we report on the construction and functional characterization of a positively supercharged derivative of Pyrococcus furiosus thioredoxin (PfTrx), a thermally hyperstable protein we have previously validated as a peptide epitope display and immunogenicity enhancing scaffold. Genetic conversion of 13 selected amino acids to lysine residues conferred to PfTrx a net charge of +21 (starting from the -1 charge of the wild-type protein), along with the ability to bind nucleic acids. In its unfused form, +21 PfTrx was readily internalized by HeLa cells and displayed a predominantly cytosolic localization. A different intracellular distribution was observed for a +21 PfTrx-eGFP fusion protein, which although still capable of cell penetration was predominantly localized within endosomes. A mixed cytosolic/endosomal partitioning was observed for a +21 PfTrx derivative harboring three tandemly repeated copies of a previously validated HPV16-L2 (aa 20-38) B-cell epitope grafted to the display site of thioredoxin. Compared to its wild-type counterpart, the positively supercharged antigen induced a faster immune response and displayed an overall superior immunogenicity, including a substantial degree of self-adjuvancy. Altogether, the present data point to +21 PfTrx as a promising novel carrier for intracellular antigen delivery and the construction of potentiated recombinant subunit vaccines.


Assuntos
Archaea , Peptídeos Penetradores de Células , Tiorredoxinas , Antígenos , Peptídeos Penetradores de Células/imunologia , Epitopos de Linfócito B , Células HeLa , Humanos , Peptídeos , Tiorredoxinas/imunologia , Vacinas de Subunidades Antigênicas
13.
Biosensors (Basel) ; 12(6)2022 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-35735573

RESUMO

An IoT-WiFi smart and portable electrochemical immunosensor for the quantification of SARS-CoV-2 spike protein was developed with integrated machine learning features. The immunoenzymatic sensor is based on the immobilization of monoclonal antibodies directed at the SARS-CoV-2 S1 subunit on Screen-Printed Electrodes functionalized with gold nanoparticles. The analytical protocol involves a single-step sample incubation. Immunosensor performance was validated in a viral transfer medium which is commonly used for the desorption of nasopharyngeal swabs. Remarkable specificity of the response was demonstrated by testing H1N1 Hemagglutinin from swine-origin influenza A virus and Spike Protein S1 from Middle East respiratory syndrome coronavirus. Machine learning was successfully used for data processing and analysis. Different support vector machine classifiers were evaluated, proving that algorithms affect the classifier accuracy. The test accuracy of the best classification model in terms of true positive/true negative sample classification was 97.3%. In addition, the ML algorithm can be easily integrated into cloud-based portable Wi-Fi devices. Finally, the immunosensor was successfully tested using a third generation replicating incompetent lentiviral vector pseudotyped with SARS-CoV-2 spike glycoprotein, thus proving the applicability of the immunosensor to whole virus detection.


Assuntos
Técnicas Biossensoriais , COVID-19 , Vírus da Influenza A Subtipo H1N1 , Nanopartículas Metálicas , COVID-19/diagnóstico , Ouro , Humanos , Imunoensaio/métodos , Aprendizado de Máquina , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus/análise
14.
Int J Mol Sci ; 23(6)2022 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-35328483

RESUMO

The pandemic emergency determined by the spreading worldwide of the SARS-CoV-2 virus has focused the scientific and economic efforts of the pharmaceutical industry and governments on the possibility to fight the virus by genetic immunization. The genetic material must be delivered inside the cells by means of vectors. Due to the risk of adverse or immunogenic reaction or replication connected with the more efficient viral vectors, non-viral vectors are in many cases considered as a preferred strategy for gene delivery into eukaryotic cells. This paper is devoted to the evaluation of the gene delivery ability of new synthesized gemini bis-pyridinium surfactants with six methylene spacers, both hydrogenated and fluorinated, in comparison with compounds with spacers of different lengths, previously studied. Results from MTT proliferation assay, electrophoresis mobility shift assay (EMSA), transient transfection assay tests and atomic force microscopy (AFM) imaging confirm that pyridinium gemini surfactants could be a valuable tool for gene delivery purposes, but their performance is highly dependent on the spacer length and strictly related to their structure in solution. All the fluorinated compounds are unable to transfect RD-4 cells, if used alone, but they are all able to deliver a plasmid carrying an enhanced green fluorescent protein (EGFP) expression cassette, when co-formulated with 1,2-dioleyl-sn-glycero-3-phosphoethanolamine (DOPE) in a 1:2 ratio. The fluorinated compounds with spacers formed by six (FGP6) and eight carbon atoms (FGP8) give rise to a very interesting gene delivery activity, greater to that of the commercial reagent, when formulated with DOPE. The hydrogenated compound GP16_6 is unable to sufficiently compact the DNA, as shown by AFM images.


Assuntos
DNA/genética , Técnicas de Transferência de Genes , Metano/química , Compostos de Piridínio/química , Tensoativos/química , Transfecção/métodos , Células A549 , Sobrevivência Celular , DNA/química , DNA/metabolismo , Terapia Genética/métodos , Halogenação , Humanos , Hidrogenação , Metano/metabolismo , Microscopia de Força Atômica , Estrutura Molecular , Plasmídeos/química , Plasmídeos/genética , Plasmídeos/metabolismo , Compostos de Piridínio/metabolismo , Reprodutibilidade dos Testes , Tensoativos/metabolismo
15.
Front Immunol ; 12: 705539, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34594325

RESUMO

The Morbillivirus peste des petits ruminants virus (PPRV) is the causal agent of a highly contagious disease that mostly affects sheep and goats and produces considerable losses in developing countries. Current PPRV control strategies rely on live-attenuated vaccines, which are not ideal, as they cannot differentiate infected from vaccinated animals (DIVA). Recombinant vector-based vaccines expressing viral subunits can provide an alternative to conventional vaccines, as they can be easily paired with DIVA diagnostic tools. In the present work, we used the bovine herpesvirus-4-based vector (BoHV-4-A) to deliver PPRV hemagglutinin H antigen (BoHV-4-A-PPRV-H-ΔTK). Vaccination with BoHV-4-A-PPRV-H-ΔTK protected sheep from virulent PPRV challenge and prevented virus shedding. Protection correlated with anti-PPRV IgGs, neutralizing antibodies and IFN-γ-producing cells induced by the vaccine. Detection of antibodies exclusively against H-PPRV in animal sera and not against other PPRV viral proteins such as F or N could serve as a DIVA diagnostic test when using BoHV-4-A-PPRV-H-ΔTK as vaccine. Our data indicate that BoHV-4-A-PPRV-H-ΔTK could be a promising new approach for PPRV eradication programs.


Assuntos
Vetores Genéticos , Herpesvirus Bovino 4 , Peste dos Pequenos Ruminantes/prevenção & controle , Vírus da Peste dos Pequenos Ruminantes , Doenças dos Ovinos/imunologia , Ovinos/imunologia , Proteínas Virais , Vacinas Virais , Animais , Chlorocebus aethiops , Cães , Vetores Genéticos/genética , Vetores Genéticos/imunologia , Herpesvirus Bovino 4/genética , Herpesvirus Bovino 4/imunologia , Peste dos Pequenos Ruminantes/genética , Peste dos Pequenos Ruminantes/imunologia , Vírus da Peste dos Pequenos Ruminantes/genética , Vírus da Peste dos Pequenos Ruminantes/imunologia , Ovinos/virologia , Doenças dos Ovinos/virologia , Células Vero , Proteínas Virais/genética , Proteínas Virais/imunologia , Vacinas Virais/genética , Vacinas Virais/imunologia
16.
Vaccines (Basel) ; 9(10)2021 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-34696193

RESUMO

Lack of understanding of the immune response to mycobacterial pathogens has impeded progress in development of vaccines. Infection leads to development of an immune response that controls infection but is unable to eliminate the pathogen, resulting in a persistent infection. Although this puzzle remains to be solved, progress has been made using cattle as a model species to study the immune response to a prototypic mycobacterium, Mycobacterium a. paratuberculosis (Map). As chronicled in the review, incremental advances in characterizing the immune response to mycobacteria during the last 30 years with increases in information on the evolution of mycobacteria and relA, a gene regulating the stringent response, have brought us closer to an answer. We provide a brief overview of how mycobacterial pathogens were introduced into cattle during the transition of humankind to nomadic pastoralists who domesticated animals for food and farming. We summarize what is known about speciation of mycobacteria since the discovery of Mybacterium tuberculsis Mtb, M. bovis Mbv, and Map as zoonotic pathogens and discuss the challenges inherent in the development of vaccines to mycobacteria. We then describe how cattle were used to characterize the immune response to a prototypic mycobacterial pathogen and development of novel candidate vaccines.

17.
Front Cell Dev Biol ; 9: 709225, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34336863

RESUMO

Mesenchymal stromal/stem cells (MSCs) are a fibroblast-like cell population with high regenerative potential that can be isolated from many different tissues. Several data suggest MSCs as a therapeutic tool capable of migrating to a site of injury and guide tissue regeneration mainly through their secretome. Pulmonary first-pass effect occurs during intravenous administration of MSCs, where 50 to 80% of the cells tend to localize in the lungs. This phenomenon has been exploited to study MSC potential therapeutic effects in several preclinical models of lung diseases. Data demonstrated that, regardless of the lung disease severity and the delivery route, MSCs were not able to survive longer than 24 h in the respiratory tract but still surprisingly determined a therapeutic effect. In this work, two different mouse bone marrow-derived mesenchymal stromal/stem cell (mBM-MSC) lines, stably transduced with a third-generation lentiviral vector expressing luciferase and green fluorescent protein reporter genes tracking MSCs in vivo biodistribution and persistency, have been generated. Cells within the engrafted lung were in vivo traced using the high-throughput bioluminescence imaging (BLI) technique, with no invasiveness on animal, minimizing biological variations and costs. In vivo BLI analysis allowed the detection and monitoring of the mBM-MSC clones up to 28 days after implantation independently from the delivery route. This longer persistency than previously observed (24 h) could have a strong impact in terms of pharmacokinetics and pharmacodynamics of MSCs as a therapeutic tool.

18.
Braz J Microbiol ; 52(3): 1119-1133, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34255309

RESUMO

In recent years, Bovine herpesvirus 4 (BoHV-4) has emerged as an attractive gene delivery viral vector, mainly for vaccination purposes in the veterinary field. In the present study, a new infectious clone of the BoHV-4 genome carrying a bacterial artificial chromosome vector (BoHV-4-BAC) was developed by homologous recombination in mammalian cell culture and bacterial systems, and exploited to express a truncated form of glycoprotein D (tgD) of Bovine herpesvirus 1 (BoHV-1) (BoHV-4-tgD∆TK) as a vaccine candidate. This construct's immunogenicity was compared to a DNA vector expressing the same antigen (pC-tgD) in a BALB/c mouse model. After the mice were immunized, total and specific antibody responses, cytokine responses, total splenocyte cells proliferation/cytotoxicity, and virus neutralization assays were conducted to analyze the immune response elicited by both constructs. Mice from both vaccine groups developed significant humoral and cellular immune responses after a booster dose regime was conducted on day 28 post-injection. In almost all immunological assays, BoHV-4-tgDΔTK induced as high an immune response as pC-tgD. In both vaccine constructs, neutralizing antibodies were a significant determining factor in protection against BoHV-1, even after the first injection. We conclude that a BoHV-4-based viral vector offers an effective immunization strategy as an alternative to DNA-based immunization platforms, at least to combat BoHV-1.


Assuntos
Herpesvirus Bovino 1 , Herpesvirus Bovino 4 , Proteínas Virais/imunologia , Animais , Anticorpos Neutralizantes , Anticorpos Antivirais , Herpesvirus Bovino 1/genética , Herpesvirus Bovino 1/imunologia , Herpesvirus Bovino 4/genética , Camundongos , Camundongos Endogâmicos BALB C , Proteínas Virais/genética
19.
Vaccines (Basel) ; 9(4)2021 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-33920999

RESUMO

COVID-19 is an ongoing pandemic caused by the highly infectious coronavirus SARS-CoV-2 that is engaging worldwide scientific research to find a timely and effective eradication strategy. Great efforts have been put into anti-COVID-19 vaccine generation in an effort to protect the world population and block SARS-CoV-2 spread. To validate the protective efficacy of the vaccination campaign and effectively control the pandemic, it is necessary to quantify the induction of neutralizing antibodies by vaccination, as they have been established to be a correlate of protection. In this work, a SARS-CoV-2 pseudovirus neutralization assay, based on a replication-incompetent lentivirus expressing an adapted form of CoV-2 S protein and an ACE2/TMPRSS2 stably expressing cell line, has been minimized in terms of protocol steps without loss of accuracy. The goal of the present simplified neutralization system is to improve SARS-CoV-2 vaccination campaign by means of an easy and accessible approach to be performed in any medical laboratory, maintaining the sensitivity and quantitative reliability of classical serum neutralization assays. Further, this assay can be easily adapted to different coronavirus variants by simply modifying the pseudotyping vector.

20.
Int J Mol Sci ; 22(5)2021 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-33668361

RESUMO

Multiple myeloma (MM) is a hematologic malignancy characterized by the accumulation of bone marrow (BM) clonal plasma cells, which are strictly dependent on the microenvironment. Despite the improvement of MM survival with the use of new drugs, MM patients still relapse and become always refractory to the treatment. The development of new therapeutic strategies targeting both tumor and microenvironment cells are necessary. Oncolytic virotherapy represent a promising approach in cancer treatment due to tumor-specific oncolysis and activation of the immune system. Different types of human viruses were checked in preclinical MM models, and the use of several viruses are currently investigated in clinical trials in MM patients. More recently, the use of alternative non-human viruses has been also highlighted in preclinical studies. This strategy could avoid the antiviral immune response of the patients against human viruses due to vaccination or natural infections, which could invalid the efficiency of virotherapy approach. In this review, we explored the effects of the main oncolytic viruses, which act through both direct and indirect mechanisms targeting myeloma and microenvironment cells inducing an anti-MM response. The efficacy of the oncolytic virus-therapy in combination with other anti-MM drugs targeting the microenvironment has been also discussed.


Assuntos
Mieloma Múltiplo/terapia , Terapia Viral Oncolítica/métodos , Microambiente Tumoral , Animais , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA