Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
Cell Chem Biol ; 29(5): 870-882.e11, 2022 05 19.
Artigo em Inglês | MEDLINE | ID: mdl-34520745

RESUMO

The pathogen Mycobacterium tuberculosis (Mtb) evades the innate immune system by interfering with autophagy and phagosomal maturation in macrophages, and, as a result, small molecule stimulation of autophagy represents a host-directed therapeutics (HDTs) approach for treatment of tuberculosis (TB). Here we show the marine natural product clionamines activate autophagy and inhibit Mtb survival in macrophages. A yeast chemical-genetics approach identified Pik1 as target protein of the clionamines. Biotinylated clionamine B pulled down Pik1 from yeast cell lysates and a clionamine analog inhibited phosphatidyl 4-phosphate (PI4P) production in yeast Golgi membranes. Chemical-genetic profiles of clionamines and cationic amphiphilic drugs (CADs) are closely related, linking the clionamine mode of action to co-localization with PI4P in a vesicular compartment. Small interfering RNA (siRNA) knockdown of PI4KB, a human homolog of Pik1, inhibited the survival of Mtb in macrophages, identifying PI4KB as an unexploited molecular target for efforts to develop HDT drugs for treatment of TB.


Assuntos
Mycobacterium tuberculosis , Proteínas de Saccharomyces cerevisiae , Tuberculose , 1-Fosfatidilinositol 4-Quinase/metabolismo , Autofagia , Humanos , Macrófagos/metabolismo , Saccharomyces cerevisiae , Proteínas de Saccharomyces cerevisiae/metabolismo , Tuberculose/tratamento farmacológico
2.
Proc Natl Acad Sci U S A ; 116(35): 17290-17297, 2019 08 27.
Artigo em Inglês | MEDLINE | ID: mdl-31399543

RESUMO

Second harmonic generation (SHG) is an emergent biophysical method that sensitively measures real-time conformational change of biomolecules in the presence of biological ligands and small molecules. This study describes the successful implementation of SHG as a primary screening platform to identify fragment ligands to oncogenic Kirsten rat sarcoma (KRas). KRas is the most frequently mutated driver of pancreatic, colon, and lung cancers; however, there are few well-characterized small molecule ligands due to a lack of deep binding pockets. Using SHG, we identified a fragment binder to KRasG12D and used 1H 15N transverse relaxation optimized spectroscopy (TROSY) heteronuclear single-quantum coherence (HSQC) NMR to characterize its binding site as a pocket adjacent to the switch 2 region. The unique sensitivity of SHG furthered our study by revealing distinct conformations induced by our hit fragment compared with 4,6-dichloro-2-methyl-3-aminoethyl-indole (DCAI), a Ras ligand previously described to bind the same pocket. This study highlights SHG as a high-throughput screening platform that reveals structural insights in addition to ligand binding.


Assuntos
Inibidores de Proteínas Quinases/química , Proteínas Proto-Oncogênicas p21(ras)/antagonistas & inibidores , Proteínas Proto-Oncogênicas p21(ras)/química , Substituição de Aminoácidos , Sítios de Ligação , Humanos , Mutação de Sentido Incorreto , Ressonância Magnética Nuclear Biomolecular , Proteínas Proto-Oncogênicas p21(ras)/genética
3.
PLoS One ; 9(12): e114964, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25494214

RESUMO

Autophagy is a cellular catabolic process responsible for the degradation of cytoplasmic constituents, including organelles and long-lived proteins, that helps maintain cellular homeostasis and protect against various cellular stresses. Verteporfin is a benzoporphyrin derivative used clinically in photodynamic therapy to treat macular degeneration. Verteporfin was recently found to inhibit autophagosome formation by an unknown mechanism that does not require exposure to light. We report that verteporfin directly targets and modifies p62, a scaffold and adaptor protein that binds both polyubiquitinated proteins destined for degradation and LC3 on autophagosomal membranes. Western blotting experiments revealed that exposure of cells or purified p62 to verteporfin causes the formation of covalently crosslinked p62 oligomers by a mechanism involving low-level singlet oxygen production. Rose bengal, a singlet oxygen producer structurally unrelated to verteporfin, also produced crosslinked p62 oligomers and inhibited autophagosome formation. Co-immunoprecipitation experiments demonstrated that crosslinked p62 oligomers retain their ability to bind to LC3 but show defective binding to polyubiquitinated proteins. Mutations in the p62 PB1 domain that abolish self-oligomerization also abolished crosslinked oligomer formation. Interestingly, small amounts of crosslinked p62 oligomers were detected in untreated cells, and other groups noted the accumulation of p62 forms with reduced SDS-PAGE mobility in cellular and animal models of oxidative stress and aging. These data indicate that p62 is particularly susceptible to oxidative crosslinking and lead us to propose a model whereby oxidized crosslinked p62 oligomers generated rapidly by drugs like verteporfin or over time during the aging process interfere with autophagy.


Assuntos
Autofagia/efeitos dos fármacos , Porfirinas/farmacologia , Proteínas Proto-Oncogênicas c-myc/metabolismo , Autofagossomos/metabolismo , Humanos , Células MCF-7 , Microscopia de Fluorescência , Fagossomos/efeitos dos fármacos , Proteínas Recombinantes/metabolismo , Rosa Bengala/farmacologia , Ubiquitinação , Verteporfina
4.
PLoS One ; 8(10): e76503, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24146879

RESUMO

Gefitinib (Iressa(®), ZD1839) is a small molecule inhibitor of the epidermal growth factor receptor (EGFR) tyrosine kinase. We report on an early cellular response to gefitinib that involves induction of functional autophagic flux in phenotypically diverse breast cancer cells that were sensitive (BT474 and SKBR3) or insensitive (MCF7-GFPLC3 and JIMT-1) to gefitinib. Our data show that elevation of autophagy in gefitinib-treated breast cancer cells correlated with downregulation of AKT and ERK1/2 signaling early in the course of treatment. Inhibition of autophagosome formation by BECLIN-1 or ATG7 siRNA in combination with gefitinib reduced the abundance of autophagic organelles and sensitized SKBR3 but not MCF7-GFPLC3 cells to cell death. However, inhibition of the late stage of gefitinib-induced autophagy with hydroxychloroquine (HCQ) or bafilomycin A1 significantly increased (p<0.05) cell death in gefitinib-sensitive SKBR3 and BT474 cells, as well as in gefitinib-insensitive JIMT-1 and MCF7-GFPLC3 cells, relative to the effects observed with the respective single agents. Treatment with the combination of gefitinib and HCQ was more effective (p<0.05) in delaying tumor growth than either monotherapy (p>0.05), when compared to vehicle-treated controls. Our results also show that elevated autophagosome content following short-term treatment with gefitinib is a reversible response that ceases upon removal of the drug. In aggregate, these data demonstrate that elevated autophagic flux is an early response to gefitinib and that targeting EGFR and autophagy should be considered when developing new therapeutic strategies for EGFR expressing breast cancers.


Assuntos
Autofagia/efeitos dos fármacos , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/patologia , Quinazolinas/farmacologia , Quinazolinas/uso terapêutico , Adenina/análogos & derivados , Adenina/farmacologia , Animais , Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Proteínas Reguladoras de Apoptose/metabolismo , Proteína 7 Relacionada à Autofagia , Proteína Beclina-1 , Neoplasias da Mama/ultraestrutura , Cadaverina/análogos & derivados , Cadaverina/metabolismo , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Vesículas Citoplasmáticas/efeitos dos fármacos , Vesículas Citoplasmáticas/metabolismo , Vesículas Citoplasmáticas/ultraestrutura , Receptores ErbB/metabolismo , Feminino , Gefitinibe , Técnicas de Silenciamento de Genes , Inativação Gênica/efeitos dos fármacos , Humanos , Hidroxicloroquina/farmacologia , Hidroxicloroquina/uso terapêutico , Proteínas de Membrana/metabolismo , Camundongos , Fagossomos/efeitos dos fármacos , Fagossomos/metabolismo , Fagossomos/ultraestrutura , RNA Interferente Pequeno/metabolismo , Transdução de Sinais/efeitos dos fármacos , Coloração e Rotulagem , Tamoxifeno/farmacologia , Tamoxifeno/uso terapêutico , Resultado do Tratamento , Enzimas Ativadoras de Ubiquitina/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
5.
J Cancer ; 4(7): 585-96, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24069069

RESUMO

Pancreatic ductal adenocarcinoma (PDAC) is highly resistant to chemotherapy. It has been described as requiring elevated autophagy for growth and inhibiting autophagy has been proposed as a treatment strategy. To date, all preclinical reports and clinical trials investigating pharmacological inhibition of autophagy have used chloroquine or hydroxychloroquine, which interfere with lysosomal function and block autophagy at a late stage. Verteporfin is a newly discovered autophagy inhibitor that blocks autophagy at an early stage by inhibiting autophagosome formation. Here we report that PDAC cell lines show variable sensitivity to verteporfin in vitro, suggesting cell-line specific autophagy dependence. Using image-based and molecular analyses, we show that verteporfin inhibits autophagy stimulated by gemcitabine, the current standard treatment for PDAC. Pharmacokinetic and efficacy studies in a BxPC-3 xenograft mouse model demonstrated that verteporfin accumulated in tumors at autophagy-inhibiting levels and inhibited autophagy in vivo, but did not reduce tumor volume or increase survival as a single agent. In combination with gemcitabine verteporfin moderately reduced tumor growth and enhanced survival compared to gemcitabine alone. While our results do not uphold the premise that autophagy inhibition might be widely effective against PDAC as a single-modality treatment, they do support autophagy inhibition as an approach to sensitize PDAC to gemcitabine.

6.
Org Lett ; 15(15): 3918-21, 2013 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-23869546

RESUMO

Clionamine B (2), an aminosteroid isolated from the marine sponge Cliona celata, has been synthesized starting from the plant sapogenin tigogenin (5). A key step in the synsthesis is the stereoselective introduction of the C-20 α-hydroxyl substituent via oxidation of a γ-lactone enolate with molecular oxygen. Synthetic clionamine B (2) strongly stimulated autophagy in human breast cancer MCF-7 cells.


Assuntos
Autofagia/efeitos dos fármacos , Neoplasias da Mama/patologia , Células MCF-7/química , Poríferos/química , Esteroides/química , Animais , Neoplasias da Mama/química , Neoplasias da Mama/metabolismo , Humanos , Biologia Marinha , Ressonância Magnética Nuclear Biomolecular , Estereoisomerismo , Esteroides/síntese química
7.
PLoS One ; 6(6): e21549, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21738705

RESUMO

BACKGROUND: Acidification of the cytoplasm and the extracellular environment is associated with many physiological and pathological conditions, such as intense exercise, hypoxia and tumourigenesis. Acidification affects important cellular functions including protein synthesis, growth, and proliferation. Many of these vital functions are controlled by mTORC1, a master regulator protein kinase that is activated by various growth-stimulating signals and inactivated by starvation conditions. Whether mTORC1 can also respond to changes in extracellular or cytoplasmic pH and play a role in limiting anabolic processes in acidic conditions is not known. METHODOLOGY/FINDINGS: We examined the effects of acidifying the extracellular medium from pH 7.4 to 6.4 on human breast carcinoma MCF-7 cells and immortalized mouse embryo fibroblasts. Decreasing the extracellular pH caused intracellular acidification and rapid, graded and reversible inhibition of mTORC1, assessed by measuring the phosphorylation of the mTORC1 substrate S6K. Fibroblasts deleted of the tuberous sclerosis complex TSC2 gene, a major negative regulator of mTORC1, were unable to inhibit mTORC1 in acidic extracellular conditions, showing that the TSC1-TSC2 complex is required for this response. Examination of the major upstream pathways converging on the TSC1-TSC2 complex showed that Akt signaling was unaffected by pH but that the Raf/MEK/ERK pathway was inhibited. Inhibition of MEK with drugs caused only modest mTORC1 inhibition, implying that other unidentified pathways also play major roles. CONCLUSIONS: This study reveals a novel role for the TSC1/TSC2 complex and mTORC1 in sensing variations in ambient pH. As a common feature of low tissue perfusion, low glucose availability and high energy expenditure, acidic pH may serve as a signal for mTORC1 to downregulate energy-consuming anabolic processes such as protein synthesis as an adaptive response to metabolically stressful conditions.


Assuntos
Proteínas/metabolismo , Transdução de Sinais/fisiologia , Animais , Linhagem Celular , Linhagem Celular Tumoral , Humanos , Concentração de Íons de Hidrogênio , Alvo Mecanístico do Complexo 1 de Rapamicina , Complexos Multiproteicos , Fosforilação/genética , Fosforilação/fisiologia , Proteínas/genética , Transdução de Sinais/genética , Serina-Treonina Quinases TOR , Proteína 1 do Complexo Esclerose Tuberosa , Proteína 2 do Complexo Esclerose Tuberosa , Proteínas Supressoras de Tumor/genética , Proteínas Supressoras de Tumor/metabolismo
8.
J Biol Chem ; 286(9): 7290-300, 2011 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-21193398

RESUMO

Autophagy enables cells to degrade and recycle cytoplasmic materials both as a housekeeping mechanism and in response to extracellular stress such as nutrient deprivation. Recent studies indicate that autophagy also functions as a protective mechanism in response to several cancer therapy agents, making it a prospective therapeutic target. Few pharmacological inhibitors suitable for testing the therapeutic potential of autophagy inhibition in vivo are known. An automated microscopy assay was used to screen >3,500 drugs and pharmacological agents and identified one drug, verteporfin, as an inhibitor of autophagosome accumulation. Verteporfin is a benzoporphyrin derivative used in photodynamic therapy, but it inhibits autophagy without light activation. Verteporfin did not inhibit LC3/Atg8 processing or membrane recruitment in response to autophagic stimuli, but it inhibited drug- and starvation-induced autophagic degradation and the sequestration of cytoplasmic materials into autophagosomes. Transient exposure to verteporfin in starvation conditions reduced cell viability whereas cells in nutrient-rich medium were unaffected by drug treatment. Analysis of structural analogs indicated that the activity of verteporfin requires the presence of a substituted cyclohexadiene at ring A of the porphyrin core but that it can tolerate a number of large substituents at rings C and D. The existence of an autophagy inhibitor among FDA-approved drugs should facilitate the investigation of the therapeutic potential of autophagy inhibition in vivo.


Assuntos
Antineoplásicos/farmacologia , Autofagia/efeitos dos fármacos , Fagossomos/efeitos dos fármacos , Porfirinas/farmacologia , Antineoplásicos/química , Autofagia/fisiologia , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/fisiologia , Dextranos/farmacocinética , Desenho de Fármacos , Feminino , Fluoresceína-5-Isotiocianato/análogos & derivados , Fluoresceína-5-Isotiocianato/farmacocinética , Proteínas de Fluorescência Verde/farmacocinética , Humanos , Microscopia Eletrônica , Fagossomos/fisiologia , Fagossomos/ultraestrutura , Porfirinas/química , Verteporfina
10.
J Nat Prod ; 73(3): 422-7, 2010 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-20028134

RESUMO

Five new bafilomycins, F (1) to J (5), have been isolated from laboratory cultures of two Streptomyces spp. obtained from marine sediments collected in British Columbia, and their structures have been elucidated by detailed analysis of spectroscopic data and the synthesis of model compounds. The new bafilomycins F (1), G (2), H (3), and J (5) along with several co-occurring known analogues showed potent inhibition of autophagy in microscopy and biochemical assays. The thiomorpholinone fragment present in bafilomycin F (1) has not previously been found in a natural product.


Assuntos
Autofagia/efeitos dos fármacos , Macrolídeos/isolamento & purificação , Streptomyces/química , Colúmbia Britânica , Macrolídeos/síntese química , Macrolídeos/química , Macrolídeos/farmacologia , Biologia Marinha , Modelos Moleculares , Estrutura Molecular , Ressonância Magnética Nuclear Biomolecular , Estereoisomerismo
11.
PLoS One ; 4(9): e7124, 2009 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-19771169

RESUMO

BACKGROUND: Mammalian target of rapamycin complex 1 (mTORC1) is a protein kinase that relays nutrient availability signals to control numerous cellular functions including autophagy, a process of cellular self-eating activated by nutrient depletion. Addressing the therapeutic potential of modulating mTORC1 signaling and autophagy in human disease requires active chemicals with pharmacologically desirable properties. METHODOLOGY/PRINCIPAL FINDINGS: Using an automated cell-based assay, we screened a collection of >3,500 chemicals and identified three approved drugs (perhexiline, niclosamide, amiodarone) and one pharmacological reagent (rottlerin) capable of rapidly increasing autophagosome content. Biochemical assays showed that the four compounds stimulate autophagy and inhibit mTORC1 signaling in cells maintained in nutrient-rich conditions. The compounds did not inhibit mTORC2, which also contains mTOR as a catalytic subunit, suggesting that they do not inhibit mTOR catalytic activity but rather inhibit signaling to mTORC1. mTORC1 inhibition and autophagosome accumulation induced by perhexiline, niclosamide or rottlerin were rapidly reversed upon drug withdrawal whereas amiodarone inhibited mTORC1 essentially irreversibly. TSC2, a negative regulator of mTORC1, was required for inhibition of mTORC1 signaling by rottlerin but not for mTORC1 inhibition by perhexiline, niclosamide and amiodarone. Transient exposure of immortalized mouse embryo fibroblasts to these drugs was not toxic in nutrient-rich conditions but led to rapid cell death by apoptosis in starvation conditions, by a mechanism determined in large part by the tuberous sclerosis complex protein TSC2, an upstream regulator of mTORC1. By contrast, transient exposure to the mTORC1 inhibitor rapamycin caused essentially irreversible mTORC1 inhibition, sustained inhibition of cell growth and no selective cell killing in starvation. CONCLUSION/SIGNIFICANCE: The observation that drugs already approved for human use can reversibly inhibit mTORC1 and stimulate autophagy should greatly facilitate the preclinical and clinical testing of mTORC1 inhibition for indications such as tuberous sclerosis, diabetes, cardiovascular disease and cancer.


Assuntos
Autofagia/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Fatores de Transcrição/antagonistas & inibidores , Fatores de Transcrição/metabolismo , Acetofenonas/farmacologia , Amiodarona/farmacologia , Antinematódeos/farmacologia , Automação , Autofagia/fisiologia , Benzopiranos/farmacologia , Fármacos Cardiovasculares/farmacologia , Avaliação Pré-Clínica de Medicamentos/métodos , Inibidores Enzimáticos/farmacologia , Humanos , Alvo Mecanístico do Complexo 1 de Rapamicina , Modelos Químicos , Complexos Multiproteicos , Niclosamida/farmacologia , Ciências da Nutrição , Perexilina/farmacologia , Proteínas , Serina-Treonina Quinases TOR
12.
Chem Biol Drug Des ; 74(1): 57-67, 2009 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-19519745

RESUMO

The eIF2alpha kinase general control non-depressible 2 integrates translation initiation rates to amino acid availability. General control non-depressible 2 also regulates translation initiation during synaptic plasticity and GCN2(-/-) mice show improved memory compared with wild-type mice with a reduced threshold for triggering late long-term potentiation. This property suggests that inhibiting general control non-depressible 2 function might represent a therapeutic avenue for improving memory. We screened for general control non-depressible 2 inhibitors using a small library of known kinase inhibitors and ATP-analogs and identified three compounds--indirubin-3'-monoxime, SP600125 and a SyK inhibitor with activity against general control non-depressible 2. All three compounds inhibit the ability of general control non-depressible 2 to phosphorylate eIF2alphain vitro as well as in vivo following UV-treatment of mouse embryonic fibroblasts. Using computer-assisted modeling, we modeled the binding of the inhibitors in the ATP-binding site of general control non-depressible 2. This work provides the molecular basis for undertaking structure-activity relationships of these compounds in order to develop specific inhibitors of general control non-depressible 2.


Assuntos
Antracenos/farmacologia , Inibidores de Proteínas Quinases/farmacologia , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Raios Ultravioleta , Animais , Antracenos/química , Sítios de Ligação , Linhagem Celular , Simulação por Computador , Fibroblastos/efeitos da radiação , Peptídeos e Proteínas de Sinalização Intracelular/antagonistas & inibidores , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Camundongos , Camundongos Knockout , Fosforilação , Inibidores de Proteínas Quinases/química , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Tirosina Quinases/antagonistas & inibidores , Proteínas Tirosina Quinases/metabolismo , Relação Estrutura-Atividade , Quinase Syk
13.
Org Lett ; 10(14): 2959-62, 2008 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-18553912

RESUMO

Clionamines A-D (1- 4), new aminosteroids that modulate autophagy, have been isolated from South African specimens of the sponge Cliona celata. Clionamine D (4) has an unprecedented spiro bislactone side chain.


Assuntos
Poríferos/química , Compostos de Espiro/síntese química , Esteroides/síntese química , Animais , Biologia Marinha , Estrutura Molecular , Ressonância Magnética Nuclear Biomolecular , Compostos de Espiro/química , Esteroides/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA