Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
bioRxiv ; 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38464327

RESUMO

Objectives: Immunocompromised individuals are susceptible to severe COVID-19 and potentially contribute to the emergence of variants with altered pathogenicity due to persistent infection. This study investigated the impact of immunosuppression on SARS-CoV-2 infection in k18-hACE2 mice and the effectiveness of antiviral treatments in this context. Methods: Mice were immunosuppressed using cyclophosphamide and infected with a B lineage of SARS-CoV-2. Molnupiravir and nirmatrelvir, alone and in combination, were administered and viral load and viral sequence diversity was assessed. Results: Treatment of infected but immune compromised mice with both compounds either singly or in combination resulted in decreased viral loads and pathological changes compared to untreated animals. Treatment also abrogated infection of neuronal tissue. However, no consistent changes in the viral consensus sequence were observed, except for the emergence of the S:H655Y mutation. Molnupiravir, but not nirmatrelvir or immunosuppression alone, increased the transition/transversion (Ts/Tv) ratio, representative of A>G and C>U mutations and this increase was not altered by the co-administration of nirmatrelvir with molnupiravir.Notably, immunosuppression itself did not appear to promote the emergence of mutational characteristic of variants of concern (VOCs). Conclusions: Further investigations are warranted to fully understand the role of immunocompromised individuals in VOC development and to inform optimised public health strategies. It is more likely that immunodeficiency promotes viral persistence but does not necessarily lead to substantial consensus-level changes in the absence of antiviral selection pressure. Consistent with mechanisms of action, molnupiravir showed a stronger mutagenic effect than nirmatrelvir in this model.

2.
Virus Evol ; 9(1): vead016, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37744653

RESUMO

The introgression of antiviral strains of Wolbachia into Aedes aegypti mosquito populations is a public health intervention for the control of dengue. Plausibly, dengue virus (DENV) could evolve to bypass the antiviral effects of Wolbachia and undermine this approach. Here, we established a serial-passage system to investigate the evolution of DENV in Ae. aegypti mosquitoes infected with the wMel strain of Wolbachia. Using this system, we report on virus genetic outcomes after twenty passages of serotype 1 of DENV (DENV-1). An amino acid substitution, E203K, in the DENV-1 envelope protein was more frequently detected in the consensus sequence of virus populations passaged in wMel-infected Ae. aegypti than wild-type counterparts. Positive selection at residue 203 was reproducible; it occurred in passaged virus populations from independent DENV-1-infected patients and also in a second, independent experimental system. In wild-type mosquitoes and human cells, the 203K variant was rapidly replaced by the progenitor sequence. These findings provide proof of concept that wMel-associated selection of virus populations can occur in experimental conditions. Field-based studies are needed to explore whether wMel imparts selective pressure on DENV evolution in locations where wMel is established.

3.
Nature ; 623(7987): 594-600, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37748513

RESUMO

Molnupiravir, an antiviral medication widely used against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), acts by inducing mutations in the virus genome during replication. Most random mutations are likely to be deleterious to the virus and many will be lethal; thus, molnupiravir-induced elevated mutation rates reduce viral load1,2. However, if some patients treated with molnupiravir do not fully clear the SARS-CoV-2 infections, there could be the potential for onward transmission of molnupiravir-mutated viruses. Here we show that SARS-CoV-2 sequencing databases contain extensive evidence of molnupiravir mutagenesis. Using a systematic approach, we find that a specific class of long phylogenetic branches, distinguished by a high proportion of G-to-A and C-to-T mutations, are found almost exclusively in sequences from 2022, after the introduction of molnupiravir treatment, and in countries and age groups with widespread use of the drug. We identify a mutational spectrum, with preferred nucleotide contexts, from viruses in patients known to have been treated with molnupiravir and show that its signature matches that seen in these long branches, in some cases with onward transmission of molnupiravir-derived lineages. Finally, we analyse treatment records to confirm a direct association between these high G-to-A branches and the use of molnupiravir.


Assuntos
Antivirais , COVID-19 , Citidina , Hidroxilaminas , Mutagênese , Mutação , SARS-CoV-2 , Humanos , Antivirais/farmacologia , Antivirais/uso terapêutico , COVID-19/epidemiologia , COVID-19/transmissão , COVID-19/virologia , Citidina/análogos & derivados , Citidina/farmacologia , Citidina/uso terapêutico , Genoma Viral/efeitos dos fármacos , Genoma Viral/genética , Hidroxilaminas/farmacologia , Hidroxilaminas/uso terapêutico , Mutação/efeitos dos fármacos , Filogenia , SARS-CoV-2/efeitos dos fármacos , SARS-CoV-2/genética , Carga Viral , Replicação Viral/efeitos dos fármacos , Replicação Viral/genética , Evolução Molecular , Mutagênese/efeitos dos fármacos , Tratamento Farmacológico da COVID-19
4.
Genome Biol ; 24(1): 47, 2023 03 13.
Artigo em Inglês | MEDLINE | ID: mdl-36915185

RESUMO

BACKGROUND: The mutational landscape of SARS-CoV-2 varies at the dominant viral genome sequence and minor genomic variant population. During the COVID-19 pandemic, an early substitution in the genome was the D614G change in the spike protein, associated with an increase in transmissibility. Genomes with D614G are accompanied by a P323L substitution in the viral polymerase (NSP12). However, P323L is not thought to be under strong selective pressure. RESULTS: Investigation of P323L/D614G substitutions in the population shows rapid emergence during the containment phase and early surge phase during the first wave. These substitutions emerge from minor genomic variants which become dominant viral genome sequence. This is investigated in vivo and in vitro using SARS-CoV-2 with P323 and D614 in the dominant genome sequence and L323 and G614 in the minor variant population. During infection, there is rapid selection of L323 into the dominant viral genome sequence but not G614. Reverse genetics is used to create two viruses (either P323 or L323) with the same genetic background. L323 shows greater abundance of viral RNA and proteins and a smaller plaque morphology than P323. CONCLUSIONS: These data suggest that P323L is an important contribution in the emergence of variants with transmission advantages. Sequence analysis of viral populations suggests it may be possible to predict the emergence of a new variant based on tracking the frequency of minor variant genomes. The ability to predict an emerging variant of SARS-CoV-2 in the global landscape may aid in the evaluation of medical countermeasures and non-pharmaceutical interventions.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/genética , Pandemias , Patrimônio Genético , Genoma Viral , Mutação
5.
Lancet Infect Dis ; 23(2): 183-195, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36272432

RESUMO

BACKGROUND: The antiviral drug molnupiravir was licensed for treating at-risk patients with COVID-19 on the basis of data from unvaccinated adults. We aimed to evaluate the safety and virological efficacy of molnupiravir in vaccinated and unvaccinated individuals with COVID-19. METHODS: This randomised, placebo-controlled, double-blind, phase 2 trial (AGILE CST-2) was done at five National Institute for Health and Care Research sites in the UK. Eligible participants were adult (aged ≥18 years) outpatients with PCR-confirmed, mild-to-moderate SARS-CoV-2 infection who were within 5 days of symptom onset. Using permuted blocks (block size 2 or 4) and stratifying by site, participants were randomly assigned (1:1) to receive either molnupiravir (orally; 800 mg twice daily for 5 days) plus standard of care or matching placebo plus standard of care. The primary outcome was the time from randomisation to SARS-CoV-2 PCR negativity on nasopharyngeal swabs and was analysed by use of a Bayesian Cox proportional hazards model for estimating the probability of a superior virological response (hazard ratio [HR]>1) for molnupiravir versus placebo. Our primary model used a two-point prior based on equal prior probabilities (50%) that the HR was 1·0 or 1·5. We defined a priori that if the probability of a HR of more than 1 was more than 80% molnupiravir would be recommended for further testing. The primary outcome was analysed in the intention-to-treat population and safety was analysed in the safety population, comprising participants who had received at least one dose of allocated treatment. This trial is registered in ClinicalTrials.gov, NCT04746183, and the ISRCTN registry, ISRCTN27106947, and is ongoing. FINDINGS: Between Nov 18, 2020, and March 16, 2022, 1723 patients were assessed for eligibility, of whom 180 were randomly assigned to receive either molnupiravir (n=90) or placebo (n=90) and were included in the intention-to-treat analysis. 103 (57%) of 180 participants were female and 77 (43%) were male and 90 (50%) participants had received at least one dose of a COVID-19 vaccine. SARS-CoV-2 infections with the delta (B.1.617.2; 72 [40%] of 180), alpha (B.1.1.7; 37 [21%]), omicron (B.1.1.529; 38 [21%]), and EU1 (B.1.177; 28 [16%]) variants were represented. All 180 participants received at least one dose of treatment and four participants discontinued the study (one in the molnupiravir group and three in the placebo group). Participants in the molnupiravir group had a faster median time from randomisation to negative PCR (8 days [95% CI 8-9]) than participants in the placebo group (11 days [10-11]; HR 1·30, 95% credible interval 0·92-1·71; log-rank p=0·074). The probability of molnupiravir being superior to placebo (HR>1) was 75·4%, which was less than our threshold of 80%. 73 (81%) of 90 participants in the molnupiravir group and 68 (76%) of 90 participants in the placebo group had at least one adverse event by day 29. One participant in the molnupiravir group and three participants in the placebo group had an adverse event of a Common Terminology Criteria for Adverse Events grade 3 or higher severity. No participants died (due to any cause) during the trial. INTERPRETATION: We found molnupiravir to be well tolerated and, although our predefined threshold was not reached, we observed some evidence that molnupiravir has antiviral activity in vaccinated and unvaccinated individuals infected with a broad range of SARS-CoV-2 variants, although this evidence is not conclusive. FUNDING: Ridgeback Biotherapeutics, the UK National Institute for Health and Care Research, the Medical Research Council, and the Wellcome Trust.


Assuntos
Vacinas contra COVID-19 , COVID-19 , Adolescente , Adulto , Feminino , Humanos , Masculino , Antivirais , Teorema de Bayes , COVID-19/prevenção & controle , Vacinas contra COVID-19/administração & dosagem , Método Duplo-Cego , SARS-CoV-2 , Resultado do Tratamento , Reino Unido
6.
Nat Microbiol ; 7(12): 1947-1948, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36443459
7.
Nat Commun ; 13(1): 7284, 2022 11 26.
Artigo em Inglês | MEDLINE | ID: mdl-36435798

RESUMO

Molnupiravir is an antiviral, currently approved by the UK Medicines and Healthcare products Regulatory Agency (MHRA) for treating at-risk COVID-19 patients, that induces lethal error catastrophe in SARS-CoV-2. How this drug-induced mechanism of action might impact the emergence of resistance mutations is unclear. To investigate this, we used samples from the AGILE Candidate Specific Trial (CST)-2 (clinical trial number NCT04746183). The primary outcomes of AGILE CST-2 were to measure the drug safety and antiviral efficacy of molnupiravir in humans (180 participants randomised 1:1 with placebo). Here, we describe the pre-specified exploratory virological endpoint of CST-2, which was to determine the possible genomic changes in SARS-CoV-2 induced by molnupiravir treatment. We use high-throughput amplicon sequencing and minor variant analysis to characterise viral genomics in each participant whose longitudinal samples (days 1, 3 and 5 post-randomisation) pass the viral genomic quality criteria (n = 59 for molnupiravir and n = 65 for placebo). Over the course of treatment, no specific mutations were associated with molnupiravir treatment. We find that molnupiravir significantly increased the transition:transversion mutation ratio in SARS-CoV-2, consistent with the model of lethal error catastrophe. This study highlights the utility of examining intra-host virus populations to strengthen the prediction, and surveillance, of potential treatment-emergent adaptations.


Assuntos
Tratamento Farmacológico da COVID-19 , SARS-CoV-2 , Humanos , Antivirais/farmacologia , Antivirais/uso terapêutico , Genômica , SARS-CoV-2/genética
8.
PLoS One ; 17(11): e0276697, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36355791

RESUMO

To characterize species of viral mRNA transcripts generated during respiratory syncytial virus (RSV) infection, human fibroblast-like MRC-5 lung cells were infected with subgroup A RSV for 6, 16 and 24 hours. In addition, we characterised the viral transcriptome in infected Calu-3 lung epithelial cells at 48 hours post infection. Total RNA was harvested and polyadenylated mRNA was enriched and sequenced by direct RNA sequencing using an Oxford nanopore device. This platform yielded over 450,000 direct mRNA transcript reads which were mapped to the viral genome and analysed to determine the relative mRNA levels of viral genes using our in-house ORF-centric pipeline. We examined the frequency of polycistronic readthrough mRNAs were generated and assessed the length of the polyadenylated tails for each group of transcripts. We show a general but non-linear decline in gene transcript abundance across the viral genome, as predicted by the model of RSV gene transcription. However, the decline in transcript abundance is not uniform. The polyadenylate tails generated by the viral polymerase are similar in length to those generated by the host polyadenylation machinery and broadly declined in length for most transcripts as the infection progressed. Finally, we observed that the steady state abundance of transcripts with very short polyadenylate tails less than 20 nucleotides is less for N, SH and G transcripts in both cell lines compared to NS1, NS2, P, M, F and M2 which may reflect differences in mRNA stability and/or translation rates within and between the cell lines.


Assuntos
Infecções por Vírus Respiratório Sincicial , Vírus Sincicial Respiratório Humano , Humanos , RNA Mensageiro/genética , RNA Viral/genética , Vírus Sincicial Respiratório Humano/genética , Infecções por Vírus Respiratório Sincicial/genética , Análise de Sequência de RNA
9.
Gigascience ; 112022 05 26.
Artigo em Inglês | MEDLINE | ID: mdl-35639883

RESUMO

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has a complex strategy for the transcription of viral subgenomic mRNAs (sgmRNAs), which are targets for nucleic acid diagnostics. Each of these sgmRNAs has a unique 5' sequence, the leader-transcriptional regulatory sequence gene junction (leader-TRS junction), that can be identified using sequencing. High-resolution sequencing has been used to investigate the biology of SARS-CoV-2 and the host response in cell culture and animal models and from clinical samples. LeTRS, a bioinformatics tool, was developed to identify leader-TRS junctions and can be used as a proxy to quantify sgmRNAs for understanding virus biology. LeTRS is readily adaptable for other coronaviruses such as Middle East respiratory syndrome coronavirus or a future newly discovered coronavirus. LeTRS was tested on published data sets and novel clinical samples from patients and longitudinal samples from animal models with coronavirus disease 2019. LeTRS identified known leader-TRS junctions and identified putative novel sgmRNAs that were common across different mammalian species. This may be indicative of an evolutionary mechanism where plasticity in transcription generates novel open reading frames, which can then subject to selection pressure. The data indicated multiphasic abundance of sgmRNAs in two different animal models. This recapitulates the relative sgmRNA abundance observed in cells at early points in infection but not at late points. This pattern is reflected in some human nasopharyngeal samples and therefore has implications for transmission models and nucleic acid-based diagnostics. LeTRS provides a quantitative measure of sgmRNA abundance from sequencing data. This can be used to assess the biology of SARS-CoV-2 (or other coronaviruses) in clinical and nonclinical samples, especially to evaluate different variants and medical countermeasures that may influence viral RNA synthesis.


Assuntos
COVID-19 , SARS-CoV-2 , Animais , Técnicas de Cultura de Células , Biologia Computacional , Humanos , Mamíferos/genética , Modelos Animais , RNA Mensageiro/genética , SARS-CoV-2/genética
10.
Cell Rep ; 38(6): 110344, 2022 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-35093235

RESUMO

SARS-CoV-2 has a broad mammalian species tropism infecting humans, cats, dogs, and farmed mink. Since the start of the 2019 pandemic, several reverse zoonotic outbreaks of SARS-CoV-2 have occurred in mink, one of which reinfected humans and caused a cluster of infections in Denmark. Here we investigate the molecular basis of mink and ferret adaptation and demonstrate the spike mutations Y453F, F486L, and N501T all specifically adapt SARS-CoV-2 to use mustelid ACE2. Furthermore, we risk assess these mutations and conclude mink-adapted viruses are unlikely to pose an increased threat to humans, as Y453F attenuates the virus replication in human cells and all three mink adaptations have minimal antigenic impact. Finally, we show that certain SARS-CoV-2 variants emerging from circulation in humans may naturally have a greater propensity to infect mustelid hosts and therefore these species should continue to be surveyed for reverse zoonotic infections.


Assuntos
Adaptação Biológica/imunologia , SARS-CoV-2/genética , Zoonoses Virais/genética , Animais , COVID-19 , Furões/imunologia , Aptidão Genética/genética , Humanos , Vison/imunologia , Mutação , Pandemias , Sistema Respiratório/virologia , SARS-CoV-2/patogenicidade , Glicoproteína da Espícula de Coronavírus/imunologia
11.
mSphere ; 6(4): e0021921, 2021 08 25.
Artigo em Inglês | MEDLINE | ID: mdl-34287009

RESUMO

Middle East respiratory syndrome coronavirus (MERS-CoV) is a zoonotic infection that emerged in the Middle East in 2012. Symptoms range from mild to severe and include both respiratory and gastrointestinal illnesses. The virus is mainly present in camel populations with occasional zoonotic spill over into humans. The severity of infection in humans is influenced by numerous factors, and similar to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), underlying health complications can play a major role. Currently, MERS-CoV and SARS-CoV-2 are coincident in the Middle East and thus a rapid way of sequencing MERS-CoV to derive genotype information for molecular epidemiology is needed. Additionally, complicating factors in MERS-CoV infections are coinfections that require clinical management. The ability to rapidly characterize these infections would be advantageous. To rapidly sequence MERS-CoV, an amplicon-based approach was developed and coupled to Oxford Nanopore long read length sequencing. This and a metagenomic approach were evaluated with clinical samples from patients with MERS. The data illustrated that whole-genome or near-whole-genome information on MERS-CoV could be rapidly obtained. This approach provided data on both consensus genomes and the presence of minor variants, including deletion mutants. The metagenomic analysis provided information of the background microbiome. The advantage of this approach is that insertions and deletions can be identified, which are the major drivers of genotype change in coronaviruses. IMPORTANCE Middle East respiratory syndrome coronavirus (MERS-CoV) emerged in late 2012 in Saudi Arabia. The virus is a serious threat to people not only in the Middle East but also in the world and has been detected in over 27 countries. MERS-CoV is spreading in the Middle East and neighboring countries, and approximately 35% of reported patients with this virus have died. This is the most severe coronavirus infection so far described. Saudi Arabia is a destination for many millions of people in the world who visit for religious purposes (Umrah and Hajj), and so it is a very vulnerable area, which imposes unique challenges for effective control of this epidemic. The significance of our study is that clinical samples from patients with MERS were used for rapid in-depth sequencing and metagenomic analysis using long read length sequencing.


Assuntos
Infecções por Coronavirus/virologia , Microbiota/genética , Coronavírus da Síndrome Respiratória do Oriente Médio/genética , Idoso , Animais , COVID-19/virologia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , SARS-CoV-2/genética
12.
Commun Biol ; 3(1): 124, 2020 03 13.
Artigo em Inglês | MEDLINE | ID: mdl-32170151

RESUMO

Viral genomes have high gene densities and complex transcription strategies rendering transcriptome analysis through short-read RNA-seq approaches problematic. Adenovirus transcription and splicing is especially complex. We used long-read direct RNA sequencing to study adenovirus transcription and splicing during infection. This revealed a previously unappreciated complexity of alternative splicing and potential for secondary initiating codon usage. Moreover, we find that most viral transcripts tend to shorten polyadenylation lengths as infection progresses. Development of an open reading frame centric bioinformatics analysis pipeline provided a deeper quantitative and qualitative understanding of adenovirus's genetic potential. Across the viral genome adenovirus makes multiple distinctly spliced transcripts that code for the same protein. Over 11,000 different splicing patterns were recorded across the viral genome, most occurring at low levels. This low-level use of alternative splicing patterns potentially enables the virus to maximise its coding potential over evolutionary timescales.


Assuntos
Adenovírus Humanos/genética , Processamento Alternativo/genética , Evolução Molecular , Transcriptoma , Sequência de Bases , Linhagem Celular , Uso do Códon , Biologia Computacional/métodos , Éxons , Fibroblastos/virologia , Perfilação da Expressão Gênica , Genoma Viral , Humanos , Poliadenilação , Regiões Promotoras Genéticas , RNA Viral/genética , RNA-Seq
13.
PLoS One ; 11(3): e0150339, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26930276

RESUMO

Protein kinase inhibitors can be used as tools to identify proteins and pathways required for virus replication. Using virus replication assays and western blotting we found that the widely used protein kinase inhibitor BAY61-3606 inhibits replication of human cytomegalovirus (HCMV) strain AD169 and the accumulation of HCMV immediate-early proteins in AD169 infected cells, but has no effect on replication of HCMV strain Merlin. Using in vitro kinase assays we found that BAY61-3606 is a potent inhibitor of the cellular kinase IKKα. Infection of cells treated with siRNA targeting IKKα indicated IKKα was required for efficient AD169 replication and immediate-early protein production. We hypothesized that IKKα was required for AD169 immediate-early protein production as part of the canonical NF-κB signaling pathway. However, although BAY61-3606 inhibited phosphorylation of the IKKα substrate IκBα, we found no canonical or non-canonical NF-κB signaling in AD169 infected cells. Rather, we observed that treatment of cells with BAY61-3606 or siRNA targeting IKKα decreased phosphorylation of histone H3 at serine 10 (H3S10p) in western blotting assays. Furthermore, we found treatment of cells with BAY61-3606, but not siRNA targeting IKKα, inhibited the accumulation of histone H3 acetylation (H3K9ac, H3K18ac and H3K27ac) and tri-methylation (H3K27me3 and H3K36me3) modifications. Therefore, the requirement for IKKα in HCMV replication was strain-dependent and during replication of an HCMV strain requiring IKKα, IKKα-dependent H3S10 phosphorylation was associated with efficient HCMV replication and immediate-early protein production. Plus, inhibition of HCMV replication by BAY61-3606 is associated with acetylation and tri-methylation modifications of histone H3 that do not involve IKKα.


Assuntos
Infecções por Citomegalovirus/metabolismo , Histonas/metabolismo , Quinase I-kappa B/antagonistas & inibidores , Quinase I-kappa B/metabolismo , Niacinamida/análogos & derivados , Fosforilação/fisiologia , Pirimidinas/farmacologia , Acetilação/efeitos dos fármacos , Antígenos Virais/metabolismo , Células Cultivadas , Citomegalovirus/efeitos dos fármacos , Citomegalovirus/metabolismo , Humanos , Proteínas Imediatamente Precoces/metabolismo , NF-kappa B/metabolismo , Niacinamida/farmacologia , Fosforilação/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Proteínas Virais/metabolismo , Replicação Viral/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA