Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Langmuir ; 40(17): 9170-9179, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38644569

RESUMO

Molybdenum carbide MXenes have garnered considerable attention in electronics, energy storage, and catalysis. However, they are prone to oxidative degradation, but the associated mechanisms have not been systematically explored. Therefore, the oxidation mechanisms of Mo-based single-metallic/bimetallic carbide MXenes including Mo2CTx, Mo2TiC2Tx, and Mo2Ti2C3Tx in aqueous suspensions were investigated for the first time in this study. Similar to Ti3C2Tx MXene, Mo-based MXenes were found to undergo oxidative degradation in their aqueous dispersions, leading to the disruption of their crystal structure and subsequent loss of optical and electronic properties. Notably, the Mo2CTx MXene deviated from this typical oxidation behavior as it produced an amorphous product with Mo ions instead of highly crystalline Mo-oxides during oxidation. Similarly, the Mo2TiC2Tx and Mo2Ti2C3Tx MXenes did not yield crystalline Mo-oxides; instead, they produced highly crystalline anatase TiO2 and a Mo-ion-containing amorphous product simultaneously. Furthermore, high-temperature annealing of the oxidized Mo2CTx MXene powder at 800 °C transformed the amorphous Mo-containing product into highly crystalline MoO2 crystals. These findings highlight the unconventional oxidation behavior of Mo-based MXenes, which suggests that the formation of crystalline Mo-based oxides requires a higher activation energy during oxidation than that of TiO2. The unique oxidative pathway reported herein can help elucidate the oxidation mechanisms of Mo-based MXene dispersions and their products. The insights from this study can pave the way for fundamental studies in academia as well as broaden the applications of Mo-based MXenes in various industries.

2.
ACS Nano ; 2022 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-36374133

RESUMO

Ligands can control the surface chemistry, physicochemical properties, processing, and applications of nanomaterials. MXenes are the fastest growing family of two-dimensional (2D) nanomaterials, showing promise for energy, electronic, and environmental applications. However, complex oxidation states, surface terminal groups, and interaction with the environment have hindered the development of organic ligands suitable for MXenes. Here, we demonstrate a simple, fast, scalable, and universally applicable ligand chemistry for MXenes using alkylated 3,4-dihydroxy-l-phenylalanine (ADOPA). Due to the strong hydrogen-bonding and π-electron interactions between the catechol head and surface terminal groups of MXenes and the presence of a hydrophobic fluorinated alkyl tail compatible with organic solvents, the ADOPA ligands functionalize MXene surfaces under mild reaction conditions without sacrificing their properties. Stable colloidal solutions and highly concentrated liquid crystals of various MXenes, including Ti2CTx, Nb2CTx, V2CTx, Mo2CTx, Ti3C2Tx, Ti3CNTx, Mo2TiC2Tx, Mo2Ti2C3Tx, and Ti4N3Tx, have been produced in various organic solvents. Such products offer excellent electrical conductivity, improved oxidation stability, and excellent processability, enabling applications in flexible electrodes and electromagnetic interference shielding.

3.
Langmuir ; 38(41): 12657-12665, 2022 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-36206453

RESUMO

While two-dimensional (2D) Ti3C2Tx MXene in aqueous dispersions spontaneously oxidizes into titanium dioxide (TiO2) nanocrystals, the crystallization mechanism has not been comprehensively understood and the resultant crystal structures are not controlled among three representative polymorphs: anatase, rutile, and brookite. In this study, such control on the lattice structures and domain sizes of the MXene-derived TiO2 crystallites is demonstrated by means of the oxidation conditions, pH, and temperature (3.0-11.0 and 20-100 °C, respectively). It is observed that the formation of anatase phase is preferred against rutile phase in more basic and hotter oxidizing solutions, and even 100% anatase can be obtained at pH 11.0 and 100 °C. At lower pH and temperature, the portion of rutile phase increases such that it reaches ∼70% at pH 3 and 20 °C. Under certain circumstances, small portion of brookite phase is also observed. Smaller domain sizes of both anatase and rutile phases are observed in more basic oxidizing solutions and at lower temperatures. Based on these experimental results, we propose the crystallization mechanism in which the oxidative dissociation of Ti3C2Tx first produces Ti ions as the intermediate state, and they bind to abundant oxygen in the aqueous dispersions, and nucleate and crystallize into TiO2.

4.
ACS Appl Mater Interfaces ; 13(19): 22855-22865, 2021 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-33961388

RESUMO

Understanding the oxidation reaction of aqueous Ti3C2Tx MXene suspensions is very important for fostering fundamental academic studies as well as widespread industrial applications. Herein, we investigated the mechanism and kinetics of the oxidation reaction of aqueous Ti3C2Tx suspensions at various pH and temperature conditions. Through comprehensive analysis, the mechanism of the chemical oxidative degradation of aqueous Ti3C2Tx colloids was established. Chemical oxidation produces solid products such as TiO2 and amorphous carbon as well as various gaseous species including CH4, CO, CO2, and HF. Additionally, our comprehensive kinetic study proposes that aqueous Ti3C2Tx dispersions are degraded via an acid-catalyzed oxidation reaction, where, under acidic conditions, the protonation of the hydroxyl terminal groups on the Ti3C2Tx flakes induces electron localization on titanium atoms and accelerates their oxidation reaction. In contrast, under basic conditions, the electrostatically alkali-metalized hydroxyl intermediates forming a bulky solvent cage results in less electron localization on titanium atoms, and thus retards their oxidative degradation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA