Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Neurology ; 94(9): e884-e896, 2020 03 03.
Artigo em Inglês | MEDLINE | ID: mdl-32047073

RESUMO

OBJECTIVE: To evaluate the sensitivity of Rasch analysis-based, weighted Charcot-Marie-Tooth Neuropathy and Examination Scores (CMTNS-R and CMTES-R) to clinical progression in patients with Charcot-Marie-Tooth disease type 1A (CMT1A). METHODS: Patients with CMT1A from 18 sites of the Inherited Neuropathies Consortium were evaluated between 2009 and 2018. Weighted CMTNS and CMTES modified category responses were developed with Rasch analysis of the standard scores. Change from baseline for CMTNS-R and CMTES-R was estimated with longitudinal regression models. RESULTS: Baseline CMTNS-R and CMTES-R scores were available for 517 and 1,177 participants, respectively. Mean ± SD age of participants with available CMTES-R scores was 41 ± 18 (range 4-87) years, and 56% were female. Follow-up CMTES-R assessments at 1, 2, and 3 years were available for 377, 321, and 244 patients. A mixed regression model showed significant change in CMTES-R score at years 2 through 6 compared to baseline (mean change from baseline 0.59 points at 2 years, p = 0.0004, n = 321). Compared to the original CMTES, the CMTES-R revealed a 55% improvement in the standardized response mean (mean change/SD change) at 2 years (0.17 vs 0.11). Change in CMTES-R at 2 years was greatest in mildly to moderately affected patients (1.48-point mean change, 95% confidence interval 0.99-1.97, p < 0.0001, for baseline CMTES-R score 0-9). CONCLUSION: The CMTES-R demonstrates change over time in patients with CMT1A and is more sensitive than the original CMTES. The CMTES-R was most sensitive to change in patients with mild to moderate baseline disease severity and failed to capture progression in patients with severe CMT1A. CLINICALTRIALSGOV IDENTIFIER: NCT01193075.


Assuntos
Doença de Charcot-Marie-Tooth/diagnóstico , Modelos Teóricos , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Criança , Pré-Escolar , Progressão da Doença , Feminino , Humanos , Estudos Longitudinais , Masculino , Pessoa de Meia-Idade , Sensibilidade e Especificidade , Índice de Gravidade de Doença , Fatores de Tempo , Adulto Jovem
2.
Blood ; 113(12): 2843-50, 2009 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-19047682

RESUMO

The iron regulatory hormone hepcidin is transcriptionally up-regulated in response to iron loading, but the mechanisms by which iron levels are sensed are not well understood. Large-scale genetic screens in the zebrafish have resulted in the identification of hypochromic anemia mutants with a range of mutations affecting conserved pathways in iron metabolism and heme synthesis. We hypothesized that transferrin plays a critical role both in iron transport and in regulating hepcidin expression in zebrafish embryos. Here we report the identification and characterization of the zebrafish hypochromic anemia mutant, gavi, which exhibits transferrin deficiency due to mutations in transferrin-a. Morpholino knockdown of transferrin-a in wild-type embryos reproduced the anemia phenotype and decreased somite and terminal gut iron staining, while coinjection of transferrin-a cRNA partially restored these defects. Embryos with transferrin-a or transferrin receptor 2 (TfR2) deficiency exhibited low levels of hepcidin expression, however anemia, in the absence of a defect in the transferrin pathway, failed to impair hepcidin expression. These data indicate that transferrin-a transports iron and that hepcidin expression is regulated by a transferrin-a-dependent pathway in the zebrafish embryo.


Assuntos
Peptídeos Catiônicos Antimicrobianos/biossíntese , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Hepcidinas/fisiologia , Ferro/metabolismo , Transferrina/fisiologia , Proteínas de Peixe-Zebra/fisiologia , Sequência de Aminoácidos , Anemia Hipocrômica/induzido quimicamente , Anemia Hipocrômica/embriologia , Anemia Hipocrômica/genética , Animais , Peptídeos Catiônicos Antimicrobianos/genética , Proteínas de Transporte de Cátions/genética , Embrião não Mamífero/efeitos dos fármacos , Embrião não Mamífero/metabolismo , Eritropoese/efeitos dos fármacos , Eritropoese/genética , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Técnicas de Silenciamento de Genes , Hepcidinas/biossíntese , Hepcidinas/deficiência , Hepcidinas/genética , Humanos , Ferro/farmacologia , Dados de Sequência Molecular , Mutação , Especificidade de Órgãos , Fenil-Hidrazinas/toxicidade , Receptores da Transferrina/antagonistas & inibidores , Receptores da Transferrina/genética , Receptores da Transferrina/fisiologia , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Especificidade da Espécie , Transferrina/deficiência , Transferrina/genética , Peixe-Zebra/embriologia , Proteínas de Peixe-Zebra/biossíntese , Proteínas de Peixe-Zebra/deficiência , Proteínas de Peixe-Zebra/genética
3.
Exp Hematol ; 36(9): 1132-42, 2008 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-18550261

RESUMO

OBJECTIVE: Inherited or acquired mutations in the heme biosynthetic pathway leads to a debilitating class of diseases collectively known as porphyrias, with symptoms that can include anemia, cutaneous photosensitivity, and neurovisceral dysfunction. In a genetic screen for hematopoietic mutants, we isolated a zebrafish mutant, montalcino (mno), which displays hypochromic anemia and porphyria. The objective of this study was to identify the defective gene and characterize the phenotype of the zebrafish mutant. MATERIALS AND METHODS: Genetic linkage analysis was utilized to identify the region harboring the mno mutation. Candidate gene analysis together with reverse transcriptase polymerase chain reaction was utilized to identify the genetic mutation, which was confirmed via allele-specific oligo hybridizations. Whole mount in situ hybridizations and o-dianisidine staining were used to characterize the phenotype of the mno mutant. mRNA and morpholino microinjections were performed to phenocopy and/or rescue the mutant phenotype. RESULTS: Homozygous mno mutant embryos have a defect in the protoporphyrinogen oxidase (ppox) gene, which encodes the enzyme that catalyzes the oxidation of protoporphyrinogen. Homozygous mutant embryos are deficient in hemoglobin, and by 36 hours post-fertilization are visibly anemic and porphyric. The hypochromic anemia of mno embryos was partially rescued by human ppox, providing evidence for the conservation of function between human and zebrafish ppox. CONCLUSION: In humans, mutations in ppox result in variegate porphyria. At present, effective treatment for acute attacks requires the administration intravenous hemin and/or glucose. Thus, mno represents a powerful model for investigation, and a tool for future screens aimed at identifying chemical modifiers of variegate porphyria.


Assuntos
Anemia Hipocrômica/genética , Modelos Animais de Doenças , Porfiria Variegada/genética , Protoporfirinogênio Oxidase/genética , Proteínas de Peixe-Zebra/genética , Peixe-Zebra/genética , Sequência de Aminoácidos , Animais , Códon sem Sentido , Sequência Conservada , DNA Complementar/genética , Embrião não Mamífero/patologia , Hemoglobinas/biossíntese , Hemoglobinas/deficiência , Homozigoto , Humanos , Camundongos , Dados de Sequência Molecular , Fenótipo , Porfiria Variegada/sangue , Porfiria Variegada/embriologia , Proteínas Recombinantes de Fusão/fisiologia , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Especificidade da Espécie , Peixe-Zebra/embriologia , Proteínas de Peixe-Zebra/deficiência
4.
Nature ; 436(7053): 1035-39, 2005 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-16110529

RESUMO

Iron is required to produce haem and iron-sulphur (Fe-S) clusters, processes thought to occur independently. Here we show that the hypochromic anaemia in shiraz (sir) zebrafish mutants is caused by deficiency of glutaredoxin 5 (grx5), a gene required in yeast for Fe-S cluster assembly. We found that grx5 was expressed in erythroid cells of zebrafish and mice. Zebrafish grx5 rescued the assembly of grx5 yeast Fe-S, showing that the biochemical function of grx5 is evolutionarily conserved. In contrast to yeast, vertebrates use iron regulatory protein 1 (IRP1) to sense intracellular iron and regulate mRNA stability or the translation of iron metabolism genes. We found that loss of Fe-S cluster assembly in sir animals activated IRP1 and blocked haem biosynthesis catalysed by aminolaevulinate synthase 2 (ALAS2). Overexpression of ALAS2 RNA without the 5' iron response element that binds IRP1 rescued sir embryos, whereas overexpression of ALAS2 including the iron response element did not. Further, antisense knockdown of IRP1 restored sir embryo haemoglobin synthesis. These findings uncover a connection between haem biosynthesis and Fe-S clusters, indicating that haemoglobin production in the differentiating red cell is regulated through Fe-S cluster assembly.


Assuntos
Glutarredoxinas/deficiência , Glutarredoxinas/metabolismo , Heme/biossíntese , Proteínas Ferro-Enxofre/metabolismo , Oxirredutases/deficiência , Oxirredutases/metabolismo , Peixe-Zebra/metabolismo , 5-Aminolevulinato Sintetase/genética , Sequência de Aminoácidos , Animais , Clonagem Molecular , Eritrócitos/citologia , Eritrócitos/metabolismo , Regulação da Expressão Gênica , Glutarredoxinas/química , Glutarredoxinas/genética , Homeostase , Ferro/metabolismo , Proteína 1 Reguladora do Ferro/metabolismo , Proteínas Ferro-Enxofre/biossíntese , Proteínas Ferro-Enxofre/genética , Camundongos , Dados de Sequência Molecular , Oxirredutases/química , Oxirredutases/genética , Elementos de Resposta/genética , Saccharomyces cerevisiae/enzimologia , Saccharomyces cerevisiae/genética , Peixe-Zebra/genética
5.
Blood ; 106(12): 3803-10, 2005 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-16099879

RESUMO

Thrombocytes are the nucleated equivalent of platelets in nonmammalian vertebrates such as the zebrafish, Danio rerio. We have cloned zebrafish CD41 cDNA (alpha(IIb), glycoprotein IIb [GPIIb]) and its promoter and have generated transgenic zebrafish lines with green fluorescent protein (GFP)-tagged thrombocytes. CD41 mRNA transcripts appeared 42 hours after fertilization (hpf) by reverse-transcriptase-polymerase chain reaction (RT-PCR) and at 48 hpf in circulating hematopoietic cells. Flow sorting of thrombocytes from the mesonephros of adult CD41-GFP zebrafish showed a GFP(high) subset, which had the morphologic appearance of mature thrombocytes, and a GFP(low) subset with an immature appearance, suggesting that they may be thrombocyte precursors. Confocal laser microscopy of embryos 40 and 48 hpf also showed a nonmobile population of GFP+ cells in a discrete area between the dorsal aorta and caudal vein. Production of circulating thrombocytes was inhibited by the injection of antisense morpholinos for the stem-cell transcription factor scl and c-mpl, the receptor for thrombopoietin. The nonmobile pool of GFP+ cells was abolished by scl knockdown and partially inhibited by c-mpl knockdown. These studies have shown that it is possible to identify thrombocytes, thrombocyte precursors, and, possibly, early hematopoietic stem cells in zebrafish embryos and track their proliferation and maturation.


Assuntos
Plaquetas/citologia , Glicoproteína IIb da Membrana de Plaquetas/genética , Trombopoese/fisiologia , Peixe-Zebra/embriologia , Animais , Animais Geneticamente Modificados , Clonagem Molecular , Citometria de Fluxo , Proteínas de Fluorescência Verde , Humanos , Hibridização In Situ , Microscopia Confocal , Regiões Promotoras Genéticas , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Homologia de Sequência de Aminoácidos
6.
Blood ; 106(2): 521-30, 2005 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-15827125

RESUMO

Hematopoiesis involves the production of stem cells, followed by the orchestrated differentiation of the blood lineages. Genetic screens in zebrafish have identified mutants with defects that disrupt specific stages of hematopoiesis and vasculogenesis, including the cloche, spadetail (tbx16), moonshine (tif1g), bloodless, and vlad tepes (gata1) mutants. To better characterize the blood program, gene expression profiling was carried out in these mutants and in scl-morphants (scl(mo)). Distinct gene clusters were demarcated by stage-specific and mutant-specific gene regulation. These were found to correlate with the transcriptional program of hematopoietic progenitor cells, as well as of the erythroid, myeloid, and vascular lineages. Among these, several novel hematopoietic and vascular genes were detected, for instance, the erythroid transcription factors znfl2 and ncoa4. A specific regulation was found for myeloid genes, as they were more strongly expressed in vlt mutants compared with other erythroid mutants. A unique gene expression pattern of up-regulated isoprenoid synthesis genes was found in cloche and scl(mo), possibly in migrating cells. In conjunction with the high conservation of vertebrate hematopoiesis, the comparison of transcriptional profiles in zebrafish blood mutants represents a versatile and powerful tool to elucidate the genetic regulation of blood and blood vessel development.


Assuntos
Hematopoese/genética , Mutação , Peixe-Zebra/embriologia , Peixe-Zebra/genética , Animais , Vasos Sanguíneos/embriologia , Eritropoese/genética , Perfilação da Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento , Hibridização In Situ , Família Multigênica , Mielopoese/genética , Fenótipo , Transcrição Gênica
7.
Dev Biol ; 277(2): 522-36, 2005 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-15617691

RESUMO

The SCL transcription factor is critically important for vertebrate hematopoiesis and angiogenesis, and has been postulated to induce hemangioblasts, bipotential precursors for blood and endothelial cells. To investigate the function of scl during zebrafish hematopoietic and endothelial development, we utilized site-directed, anti-sense morpholinos to inhibit scl mRNA. Knockdown of scl resulted in a loss of primitive and definitive hematopoietic cell lineages. However, the expression of early hematopoietic genes, gata2 and lmo2, was unaffected, suggesting that hematopoietic cells were present but unable to further differentiate. Using gene expression analysis and visualization of vessel formation in live animals harboring an lmo2 promoter-green fluorescent protein reporter transgene (Tg(lmo2:EGFP)), we show that angioblasts were specified normally in the absence of scl, but later defects in angiogenesis were evident. While scl was not required for angioblast specification, forced expression of exogenous scl caused an expansion of both hematopoietic and endothelial gene expression, and a loss of somitic tissue. In cloche and spadetail mutants, forced expression of scl resulted in an expansion of hematopoietic but not endothelial tissue. Surprisingly, in cloche, lmo2 was not induced in response to scl over-expression. Taken together, these findings support distinct roles for scl in hematopoietic and endothelial development, downstream of hemangioblast development.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Endotélio/embriologia , Regulação da Expressão Gênica no Desenvolvimento , Hematopoese/fisiologia , Células-Tronco Hematopoéticas/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Fatores de Transcrição/metabolismo , Proteínas de Peixe-Zebra/metabolismo , Peixe-Zebra/embriologia , Animais , Elementos Antissenso (Genética)/metabolismo , Fatores de Transcrição Hélice-Alça-Hélice Básicos , Diferenciação Celular/fisiologia , Proteínas de Ligação a DNA/genética , Endotélio/metabolismo , Fator de Transcrição GATA2 , Proteínas de Fluorescência Verde/metabolismo , Hibridização In Situ , Proteínas com Domínio LIM , Metaloproteínas/metabolismo , Microinjeções , Mutação/genética , Proteínas Proto-Oncogênicas/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Proteínas com Domínio T/genética , Proteínas com Domínio T/metabolismo , Proteína 1 de Leucemia Linfocítica Aguda de Células T , Fatores de Transcrição/genética , Transgenes/genética , Peixe-Zebra/metabolismo , Proteínas de Peixe-Zebra/genética
8.
Development ; 131(24): 6225-35, 2004 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-15563524

RESUMO

Iron is a crucial metal for normal development, being required for the production of heme, which is incorporated into cytochromes and hemoglobin. The zebrafish chianti (cia) mutant manifests a hypochromic, microcytic anemia after the onset of embryonic circulation, indicative of a perturbation in red blood cell hemoglobin production. We show that cia encodes tfr1a, which is specifically expressed in the developing blood and requisite only for iron uptake in erythroid precursors. In the process of isolating zebrafish tfr1, we discovered two tfr1-like genes (tfr1a and tfr1b) and a single tfr2 ortholog. Abrogation of tfr1b function using antisense morpholinos revealed that this paralog was dispensable for hemoglobin production in red cells. tfr1b morphants exhibited growth retardation and brain necrosis, similar to the central nervous system defects observed in the Tfr1 null mouse, indicating that tfr1b is probably used by non-erythroid tissues for iron acquisition. Overexpression of mouse Tfr1, mouse Tfr2, and zebrafish tfr1b partially rescued hypochromia in cia embryos, establishing that each of these transferrin receptors are capable of supporting iron uptake for hemoglobin production in vivo. Taken together, these data show that zebrafish tfr1a and tfr1b share biochemical function but have restricted domains of tissue expression, and establish a genetic model to study the specific function of Tfr1 in erythroid cells.


Assuntos
Células Eritroides/citologia , Ferro/metabolismo , Filogenia , Receptores da Transferrina/metabolismo , Peixe-Zebra/genética , Sequência de Aminoácidos , Animais , Embrião não Mamífero/citologia , Embrião não Mamífero/metabolismo , Células Eritroides/metabolismo , Regulação da Expressão Gênica no Desenvolvimento/genética , Hemoglobinas/metabolismo , Dados de Sequência Molecular , Mutação/genética , Receptores da Transferrina/genética , Peixe-Zebra/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA