Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Plant Physiol ; 196(3): 2064-2077, 2024 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-39158089

RESUMO

Biotic and abiotic stresses frequently co-occur in nature, yet relatively little is known about how plants coordinate the response to combined stresses. Protein degradation by the ubiquitin/proteasome system is central to the regulation of multiple independent stress response pathways in plants. The Arg/N-degron pathway is a subset of the ubiquitin/proteasome system that targets proteins based on their N-termini and has been specifically implicated in the responses to biotic and abiotic stresses, including hypoxia, via accumulation of group VII ETHYLENE RESPONSE FACTOR (ERF-VII) transcription factors that orchestrate the onset of the hypoxia response program. Here, we investigated the role of the Arabidopsis (Arabidopsis thaliana) Arg/N-degron pathway in mediating the crosstalk between combined abiotic and biotic stresses using hypoxia treatments and the flg22 elicitor of pattern-triggered immunity (PTI), respectively. We uncovered a link between the plant transcriptional responses to hypoxia and flg22. Combined hypoxia and flg22 treatments showed that hypoxia represses the flg22 transcriptional program, as well as the expression of pattern recognition receptors, mitogen-activated protein kinase (MAPK) signaling and callose deposition during PTI through mechanisms that are mostly independent from the ERF-VIIs. These findings improve our understanding of the tradeoffs between plant responses to combined abiotic and biotic stresses in the context of our efforts to increase crop resilience to global climate change. Our results also show that the well-known repressive effect of hypoxia on innate immunity in animals also applies to plants.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Regulação da Expressão Gênica de Plantas , Imunidade Vegetal , Arabidopsis/genética , Arabidopsis/imunologia , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Imunidade Vegetal/genética , Estresse Fisiológico , Flagelina/farmacologia , Transdução de Sinais
2.
Plants (Basel) ; 10(5)2021 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-34067566

RESUMO

Hypoxia is an important stress for organisms, including plants and mammals. In plants, hypoxia can be the consequence of flooding and causes important crop losses worldwide. In mammals, hypoxia stress may be the result of pathological conditions. Understanding the regulation of responses to hypoxia offers insights into novel approaches for crop improvement, particularly for the development of flooding-tolerant crops and for producing better therapeutics for hypoxia-related diseases such as inflammation and cancer. Despite their evolutionary distance, plants and mammals deploy strikingly similar mechanisms to sense and respond to the different aspects of hypoxia-related stress, including low oxygen levels and the resulting energy crisis, nutrient depletion, and oxidative stress. Over the last two decades, the ubiquitin/proteasome system and the ubiquitin-like protein SUMO have been identified as key regulators that act in concert to regulate core aspects of responses to hypoxia in plants and mammals. Here, we review ubiquitin and SUMO-dependent mechanisms underlying the regulation of hypoxia response in plants and mammals. By comparing and contrasting these mechanisms in plants and mammals, this review seeks to pinpoint conceptually similar mechanisms but also highlight future avenues of research at the junction between different fields of research.

3.
Plant Methods ; 17(1): 40, 2021 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-33849604

RESUMO

BACKGROUND: Crop yield is dependent on climate conditions, which are becoming both more variable and extreme in some areas of the world as a consequence of global climate change. Increased precipitation and flooding events are the cause of important yield losses due to waterlogging or (partial) submergence of crops in the field. Our ability to screen efficiently and quickly for varieties that have increased tolerance to waterlogging or (partial) submergence is important. Barley, a staple crop worldwide, is particularly sensitive to waterlogging. Screening for waterlogging tolerant barley varieties has been ongoing for many years, but methods used to screen vary greatly, from the type of soil used to the time at which the treatment is applied. This variation makes it difficult to cross-compare results. RESULTS: Here, we have devised a scoring system to assess barley tolerance to waterlogging and compare two different methods when partial submergence is applied with either water or a starch solution at an early developmental stage, which is particularly sensitive to waterlogging or partial submergence. The use of a starch solution has been previously shown to result in more reducing soil conditions and has been used to screen for waterlogging tolerance. CONCLUSIONS: Our results show that the two methods provide similar results to qualitatively rank varieties as tolerant or sensitive, while also affecting plants differently, in that application of a starch solution results in stronger and earlier symptoms than applying partial submergence with water.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA