Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Cell Rep Med ; 5(6): 101577, 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38761799

RESUMO

Descendants of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) Omicron variant now account for almost all SARS-CoV-2 infections. The Omicron variant and its sublineages have spike glycoproteins that are highly diverged from the pandemic founder and first-generation vaccine strain, resulting in significant evasion from monoclonal antibody therapeutics and vaccines. Understanding how commonly elicited antibodies can broaden to cross-neutralize escape variants is crucial. We isolate IGHV3-53, using "public" monoclonal antibodies (mAbs) from an individual 7 months post infection with the ancestral virus and identify antibodies that exhibit potent and broad cross-neutralization, extending to the BA.1, BA.2, and BA.4/BA.5 sublineages of Omicron. Deep mutational scanning reveals these mAbs' high resistance to viral escape. Structural analysis via cryoelectron microscopy of a representative broadly neutralizing antibody, CAB-A17, in complex with the Omicron BA.1 spike highlights the structural underpinnings of this broad neutralization. By reintroducing somatic hypermutations into a germline-reverted CAB-A17, we delineate the role of affinity maturation in the development of cross-neutralization by a public class of antibodies.


Assuntos
Anticorpos Monoclonais , Anticorpos Neutralizantes , Anticorpos Antivirais , COVID-19 , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus , SARS-CoV-2/imunologia , Humanos , Anticorpos Antivirais/imunologia , COVID-19/imunologia , COVID-19/virologia , Glicoproteína da Espícula de Coronavírus/imunologia , Glicoproteína da Espícula de Coronavírus/química , Glicoproteína da Espícula de Coronavírus/genética , Anticorpos Neutralizantes/imunologia , Anticorpos Monoclonais/imunologia , Anticorpos Monoclonais/química , Reações Cruzadas/imunologia , Microscopia Crioeletrônica , Testes de Neutralização
2.
Cells ; 12(9)2023 04 24.
Artigo em Inglês | MEDLINE | ID: mdl-37174629

RESUMO

Lipopolysaccharide (LPS) stimulates dual receptor signaling by bridging the B cell receptor and Toll-like receptor 4 (BCR/TLR4). B cells from IκBNS-deficient bumble mice treated with LPS display reduced proliferative capacity and impaired plasma cell differentiation. To improve our understanding of the regulatory role of IκBNS in B cell activation and differentiation, we investigated the BCR and TLR4 signaling pathways separately by using dimeric anti-IgM Fab (F(ab')2) or lipid A, respectively. IκBNS-deficient B cells exhibited reduced survival and defective proliferative capacity in response to lipid A compared to B cells from wildtype (wt) control mice. In contrast, anti-IgM stimulation of bumble B cells resulted in enhanced viability and increased differentiation into CD138+ cells compared to control B cells. Anti-IgM-stimulated IκBNS-deficient B cells also showed enhanced cycle progression with increased levels of c-Myc and cyclin D2, and augmented levels of pCD79a, pSyk, and pERK compared to control B cells. These results suggest that IκBNS acts as a negative regulator of BCR signaling and a positive regulator of TLR4 signaling in mouse B cells.


Assuntos
Lipopolissacarídeos , Receptor 4 Toll-Like , Animais , Camundongos , Lipopolissacarídeos/farmacologia , Receptor 4 Toll-Like/metabolismo , Lipídeo A , Linfócitos B/metabolismo , Receptores de Antígenos de Linfócitos B
3.
Open Biol ; 13(5): 220369, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37161291

RESUMO

G3BP is the central node within stress-induced protein-RNA interaction networks known as stress granules (SGs). The SG-associated proteins Caprin-1 and USP10 bind mutually exclusively to the NTF2 domain of G3BP1, promoting and inhibiting SG formation, respectively. Herein, we present the crystal structure of G3BP1-NTF2 in complex with a Caprin-1-derived short linear motif (SLiM). Caprin-1 interacts with His-31 and His-62 within a third NTF2-binding site outside those covered by USP10, as confirmed using biochemical and biophysical-binding assays. Nano-differential scanning fluorimetry revealed reduced thermal stability of G3BP1-NTF2 at acidic pH. This destabilization was counterbalanced significantly better by bound USP10 than Caprin-1. The G3BP1/USP10 complex immunoprecipated from human U2OS cells was more resistant to acidic buffer washes than G3BP1/Caprin-1. Acidification of cellular condensates by approximately 0.5 units relative to the cytosol was detected by ratiometric fluorescence analysis of pHluorin2 fused to G3BP1. Cells expressing a Caprin-1/FGDF chimera with higher G3BP1-binding affinity had reduced Caprin-1 levels and slightly reduced condensate sizes. This unexpected finding may suggest that binding of the USP10-derived SLiM to NTF2 reduces the propensity of G3BP1 to enter condensates.


Assuntos
DNA Helicases , Grânulos de Estresse , Humanos , Proteínas de Ligação a Poli-ADP-Ribose , RNA Helicases , Proteínas com Motivo de Reconhecimento de RNA , Concentração de Íons de Hidrogênio , Ubiquitina Tiolesterase
4.
Front Virol ; 3: 1128253, 2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-37041983

RESUMO

The antibody response to SARS-CoV-2 shows biased immunoglobulin heavy chain variable (IGHV) gene usage, allowing definition of genetic signatures for some classes of neutralizing antibodies. We investigated IGHV gene usage frequencies by sorting spike-specific single memory B cells from individuals infected with SARS-CoV-2 early in the pandemic. From two study participants and 703 spikespecific B cells, the most used genes were IGHV1-69, IGHV3-30-3, and IGHV3-30. Here, we focused on the IGHV3-30 group of genes and an IGHV3-30-3-using ultrapotent neutralizing monoclonal antibody, CAB-F52, which displayed broad neutralizing activity also in its germline-reverted form. IGHV3-30-3 is encoded by a region of the IGH locus that is highly variable at both the allelic and structural levels. Using personalized IG genotyping, we found that 4 of 14 study participants lacked the IGHV3-30-3 gene on both chromosomes, raising the question if other, highly similar IGHV genes could substitute for IGHV3-30-3 in persons lacking this gene. In the context of CAB-F52, we found that none of the tested IGHV3-33 alleles, but several IGHV3-30 alleles could substitute for IGHV3-30-3, suggesting functional redundancy between the highly homologous IGHV3-30 and IGHV3-30-3 genes for this antibody.

5.
Nucleic Acids Res ; 51(2): 891-907, 2023 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-36629253

RESUMO

The synthesis of mitochondrial OXPHOS complexes is central to cellular metabolism, yet many molecular details of mitochondrial translation remain elusive. It has been commonly held view that translation initiation in human mitochondria proceeded in a manner similar to bacterial systems, with the mitoribosomal small subunit bound to the initiation factors, mtIF2 and mtIF3, along with initiator tRNA and an mRNA. However, unlike in bacteria, most human mitochondrial mRNAs lack 5' leader sequences that can mediate small subunit binding, raising the question of how leaderless mRNAs are recognized by mitoribosomes. By using novel in vitro mitochondrial translation initiation assays, alongside biochemical and genetic characterization of cellular knockouts of mitochondrial translation factors, we describe unique features of translation initiation in human mitochondria. We show that in vitro, leaderless mRNA transcripts can be loaded directly onto assembled 55S mitoribosomes, but not onto the mitoribosomal small subunit (28S), in a manner that requires initiator fMet-tRNAMet binding. In addition, we demonstrate that in human cells and in vitro, mtIF3 activity is not required for translation of leaderless mitochondrial transcripts but is essential for translation of ATP6 in the case of the bicistronic ATP8/ATP6 transcript. Furthermore, we show that mtIF2 is indispensable for mitochondrial protein synthesis. Our results demonstrate an important evolutionary divergence of the mitochondrial translation system and further our fundamental understanding of a process central to eukaryotic metabolism.


Assuntos
Mitocôndrias , Iniciação Traducional da Cadeia Peptídica , Animais , Humanos , Bactérias/genética , Mamíferos/genética , Mitocôndrias/fisiologia , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo , Fatores de Iniciação de Peptídeos/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
6.
J Infect Dis ; 225(6): 965-970, 2022 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-33744954

RESUMO

Antibody responses to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in serum and cerebrospinal fluid (CSF) samples from 16 patients with coronavirus disease 2019 and neurological symptoms were assessed using 2 independent methods. Immunoglobulin G (IgG) specific for the virus spike protein was found in 81% of patients in serum and in 56% in CSF. SARS-CoV-2 IgG in CSF was observed in 2 patients with negative serological findings. Levels of IgG in both serum and CSF were associated with disease severity (P < .05). All patients with elevated markers of central nervous system damage in CSF also had CSF antibodies (P = .002), and CSF antibodies had the highest predictive value for neuronal damage markers of all tested clinical variables.


Assuntos
Anticorpos Antivirais/sangue , COVID-19/diagnóstico , Imunoglobulina G/sangue , Doenças do Sistema Nervoso/sangue , Doenças do Sistema Nervoso/líquido cefalorraquidiano , SARS-CoV-2/isolamento & purificação , Idoso , Anticorpos Neutralizantes/sangue , Formação de Anticorpos , Biomarcadores/sangue , Biomarcadores/líquido cefalorraquidiano , COVID-19/sangue , COVID-19/líquido cefalorraquidiano , COVID-19/complicações , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Doenças do Sistema Nervoso/diagnóstico , Doenças do Sistema Nervoso/etiologia , SARS-CoV-2/genética , SARS-CoV-2/imunologia , Glicoproteína da Espícula de Coronavírus
7.
JCI Insight ; 2(16)2017 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-28814669

RESUMO

The maintenance of peripheral naive T lymphocytes in humans is dependent on their homeostatic division, not continuing emigration from the thymus, which undergoes involution with age. However, postthymic maintenance of naive T cells is still poorly understood. Previously we reported that recent thymic emigrants (RTEs) are contained in CD31+CD25- naive T cells as defined by their levels of signal joint T cell receptor rearrangement excision circles (sjTRECs). Here, by differential gene expression analysis followed by protein expression and functional studies, we define that the naive T cells having divided the least since thymic emigration express complement receptors (CR1 and CR2) known to bind complement C3b- and C3d-decorated microbial products and, following activation, produce IL-8 (CXCL8), a major chemoattractant for neutrophils in bacterial defense. We also observed an IL-8-producing memory T cell subpopulation coexpressing CR1 and CR2 and with a gene expression signature resembling that of RTEs. The functions of CR1 and CR2 on T cells remain to be determined, but we note that CR2 is the receptor for Epstein-Barr virus, which is a cause of T cell lymphomas and a candidate environmental factor in autoimmune disease.

8.
Nat Commun ; 6: 7000, 2015 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-25965853

RESUMO

Seasonal variations are rarely considered a contributing component to human tissue function or health, although many diseases and physiological process display annual periodicities. Here we find more than 4,000 protein-coding mRNAs in white blood cells and adipose tissue to have seasonal expression profiles, with inverted patterns observed between Europe and Oceania. We also find the cellular composition of blood to vary by season, and these changes, which differ between the United Kingdom and The Gambia, could explain the gene expression periodicity. With regards to tissue function, the immune system has a profound pro-inflammatory transcriptomic profile during European winter, with increased levels of soluble IL-6 receptor and C-reactive protein, risk biomarkers for cardiovascular, psychiatric and autoimmune diseases that have peak incidences in winter. Circannual rhythms thus require further exploration as contributors to various aspects of human physiology and disease.


Assuntos
Fatores de Transcrição ARNTL/metabolismo , Regulação da Expressão Gênica/fisiologia , Genes MHC da Classe II/fisiologia , Estações do Ano , Fatores de Transcrição ARNTL/genética , Adaptação Fisiológica , Tecido Adiposo/metabolismo , Adolescente , Adulto , Idoso , Criança , Pré-Escolar , Europa (Continente) , Gâmbia , Humanos , Lactente , Recém-Nascido , Leucócitos/metabolismo , Pessoa de Meia-Idade , Oceania , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Transcriptoma , Adulto Jovem
9.
Diabetologia ; 58(4): 781-90, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25652388

RESUMO

AIMS/HYPOTHESIS: Type 1 diabetes results from the autoimmune destruction of insulin-secreting pancreatic beta cells by T cells. Despite the established role of T cells in the pathogenesis of the disease, to date, with the exception of the identification of islet-specific T effector (Teff) cells, studies have mostly failed to identify reproducible alterations in the frequency or function of T cell subsets in peripheral blood from patients with type 1 diabetes. METHODS: We assessed the production of the proinflammatory cytokines IL-21, IFN-γ and IL-17 in peripheral blood mononuclear cells from 69 patients with type 1 diabetes and 61 healthy donors. In an additional cohort of 30 patients with type 1 diabetes and 32 healthy donors, we assessed the frequency of circulating T follicular helper (Tfh) cells in whole blood. IL-21 and IL-17 production was also measured in peripheral blood mononuclear cells (PBMCs) from a subset of 46 of the 62 donors immunophenotyped for Tfh. RESULTS: We found a 21.9% (95% CI 5.8, 40.2; p = 3.9 × 10(-3)) higher frequency of IL-21(+) CD45RA(-) memory CD4(+) Teffs in patients with type 1 diabetes (geometric mean 5.92% [95% CI 5.44, 6.44]) compared with healthy donors (geometric mean 4.88% [95% CI 4.33, 5.50]). Consistent with this finding, we found a 14.9% increase in circulating Tfh cells in the patients (95% CI 2.9, 26.9; p = 0.016). CONCLUSIONS/INTERPRETATION: These results indicate that increased IL-21 production is likely to be an aetiological factor in the pathogenesis of type 1 diabetes that could be considered as a potential therapeutic target.


Assuntos
Diabetes Mellitus Tipo 1/imunologia , Memória Imunológica , Interleucinas/imunologia , Linfócitos T Auxiliares-Indutores/imunologia , Adolescente , Adulto , Biomarcadores/metabolismo , Estudos de Casos e Controles , Células Cultivadas , Criança , Diabetes Mellitus Tipo 1/diagnóstico , Diabetes Mellitus Tipo 1/metabolismo , Feminino , Humanos , Imunofenotipagem , Interferon gama/imunologia , Interferon gama/metabolismo , Interleucina-17/imunologia , Interleucina-17/metabolismo , Interleucinas/metabolismo , Contagem de Linfócitos , Masculino , Pessoa de Meia-Idade , Linfócitos T Auxiliares-Indutores/metabolismo , Regulação para Cima , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA