Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 133
Filtrar
1.
Nat Immunol ; 25(10): 1913-1927, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39227514

RESUMO

A mucosal route of vaccination could prevent severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) replication at the site of infection and limit transmission. We compared protection against heterologous XBB.1.16 challenge in nonhuman primates (NHPs) ~5 months following intramuscular boosting with bivalent mRNA encoding WA1 and BA.5 spike proteins or mucosal boosting with a WA1-BA.5 bivalent chimpanzee adenoviral-vectored vaccine delivered by intranasal or aerosol device. NHPs boosted by either mucosal route had minimal virus replication in the nose and lungs, respectively. By contrast, protection by intramuscular mRNA was limited to the lower airways. The mucosally delivered vaccine elicited durable airway IgG and IgA responses and, unlike the intramuscular mRNA vaccine, induced spike-specific B cells in the lungs. IgG, IgA and T cell responses correlated with protection in the lungs, whereas mucosal IgA alone correlated with upper airway protection. This study highlights differential mucosal and serum correlates of protection and how mucosal vaccines can durably prevent infection against SARS-CoV-2.


Assuntos
Anticorpos Antivirais , Vacinas contra COVID-19 , COVID-19 , Imunização Secundária , Imunoglobulina A , SARS-CoV-2 , Animais , Imunoglobulina A/imunologia , SARS-CoV-2/imunologia , COVID-19/prevenção & controle , COVID-19/imunologia , COVID-19/virologia , Anticorpos Antivirais/imunologia , Anticorpos Antivirais/sangue , Vacinas contra COVID-19/imunologia , Vacinas contra COVID-19/administração & dosagem , Glicoproteína da Espícula de Coronavírus/imunologia , Glicoproteína da Espícula de Coronavírus/genética , Macaca mulatta , Adenoviridae/imunologia , Adenoviridae/genética , Imunidade nas Mucosas , Vacinas contra Adenovirus/imunologia , Vacinas contra Adenovirus/administração & dosagem , Feminino , Pulmão/virologia , Pulmão/imunologia , Linfócitos B/imunologia , Imunoglobulina G/imunologia , Imunoglobulina G/sangue , Anticorpos Neutralizantes/imunologia , Anticorpos Neutralizantes/sangue , Administração Intranasal , Vacinação/métodos , Humanos
2.
Nat Commun ; 15(1): 7461, 2024 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-39198422

RESUMO

Anti-HIV-1 broadly neutralizing antibodies (bNAbs) have the dual potential of mediating virus neutralization and antiviral effector functions through their Fab and Fc domains, respectively. So far, bNAbs with enhanced Fc effector functions in vitro have only been tested in NHPs during chronic simian-HIV (SHIV) infection. Here, we investigate the effects of administering in acute SHIVAD8-EO infection either wild-type (WT) bNAbs or bNAbs carrying the S239D/I332E/A330L (DEL) mutation, which increases binding to FcγRs. Emergence of virus in plasma and lymph nodes (LNs) was delayed by bNAb treatment and occurred earlier in monkeys given DEL bNAbs than in those given WT bNAbs, consistent with faster clearance of DEL bNAbs from plasma. DEL bNAb-treated monkeys had higher levels of circulating virus-specific IFNγ single-producing CD8+ CD69+ T cells than the other groups. In LNs, WT bNAbs were evenly distributed between follicular and extrafollicular areas, but DEL bNAbs predominated in the latter. At week 8 post-challenge, LN monocytes and NK cells from DEL bNAb-treated monkeys upregulated proinflammatory signaling pathways and LN T cells downregulated TNF signaling via NF-κB. Overall, bNAbs with increased affinity to FcγRs shape innate and adaptive cellular immunity, which may be important to consider in future strategies of passive bNAb therapy.


Assuntos
Anticorpos Neutralizantes , Anticorpos Anti-HIV , HIV-1 , Macaca mulatta , Receptores de IgG , Síndrome de Imunodeficiência Adquirida dos Símios , Vírus da Imunodeficiência Símia , Animais , Receptores de IgG/imunologia , Receptores de IgG/metabolismo , Síndrome de Imunodeficiência Adquirida dos Símios/imunologia , Síndrome de Imunodeficiência Adquirida dos Símios/virologia , HIV-1/imunologia , Vírus da Imunodeficiência Símia/imunologia , Anticorpos Neutralizantes/imunologia , Anticorpos Anti-HIV/imunologia , Anticorpos Monoclonais/imunologia , Linfonodos/imunologia , Linfócitos T CD8-Positivos/imunologia , Afinidade de Anticorpos/imunologia , NF-kappa B/metabolismo , NF-kappa B/imunologia , Humanos , Infecções por HIV/imunologia , Infecções por HIV/virologia , Células Matadoras Naturais/imunologia , Anticorpos Amplamente Neutralizantes/imunologia
3.
bioRxiv ; 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38903070

RESUMO

Broadly neutralizing antibodies targeting the V2 apex of the HIV-1 envelope trimer are among the most common specificities elicited in HIV-1-infected humans and simian-human immunodeficiency virus (SHIV)-infected macaques. To gain insight into the prevalent induction of these antibodies, we isolated and characterized 11 V2 apex-directed neutralizing antibody lineages from SHIV-infected rhesus macaques. Remarkably, all SHIV-induced V2 apex lineages were derived from reading frame two of the rhesus DH3-15*01 gene. Cryo-EM structures of envelope trimers in complex with antibodies from nine rhesus lineages revealed modes of recognition that mimicked three canonical human V2 apex-recognition modes. Notably, amino acids encoded by DH3-15*01 played divergent structural roles, inserting into a hole at the trimer apex, H-bonding to an exposed strand, or forming part of a loop scaffold. Overall, we identify a DH3-15*01-signature for rhesus V2 apex broadly neutralizing antibodies and show that highly selected genetic elements can play multiple roles in antigen recognition. Highlights: Isolated 11 V2 apex-targeted HIV-neutralizing lineages from 10 SHIV-infected Indian-origin rhesus macaquesCryo-EM structures of Fab-Env complexes for nine rhesus lineages reveal modes of recognition that mimic three modes of human V2 apex antibody recognitionAll SHIV-elicited V2 apex lineages, including two others previously published, derive from the same DH3-15*01 gene utilizing reading frame twoThe DH3-15*01 gene in reading frame two provides a necessary, but not sufficient, signature for V2 apex-directed broadly neutralizing antibodiesStructural roles played by DH3-15*01-encoded amino acids differed substantially in different lineages, even for those with the same recognition modePropose that the anionic, aromatic, and extended character of DH3-15*01 in reading frame two provides a selective advantage for V2 apex recognition compared to B cells derived from other D genes in the naïve rhesus repertoireDemonstrate that highly selected genetic elements can play multiple roles in antigen recognition, providing a structural means to enhance recognition diversity.

4.
Nat Commun ; 15(1): 5339, 2024 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-38914562

RESUMO

Broadly neutralizing antibodies (bNAbs) are promising candidates for the treatment and prevention of HIV-1 infections. Despite their critical importance, automatic detection of HIV-1 bNAbs from immune repertoires is still lacking. Here, we develop a straightforward computational method for the Rapid Automatic Identification of bNAbs (RAIN) based on machine learning methods. In contrast to other approaches, which use one-hot encoding amino acid sequences or structural alignment for prediction, RAIN uses a combination of selected sequence-based features for the accurate prediction of HIV-1 bNAbs. We demonstrate the performance of our approach on non-biased, experimentally obtained and sequenced BCR repertoires from HIV-1 immune donors. RAIN processing leads to the successful identification of distinct HIV-1 bNAbs targeting the CD4-binding site of the envelope glycoprotein. In addition, we validate the identified bNAbs using an in vitro neutralization assay and we solve the structure of one of them in complex with the soluble native-like heterotrimeric envelope glycoprotein by single-particle cryo-electron microscopy (cryo-EM). Overall, we propose a method to facilitate and accelerate HIV-1 bNAbs discovery from non-selected immune repertoires.


Assuntos
Anticorpos Neutralizantes , Microscopia Crioeletrônica , Anticorpos Anti-HIV , Infecções por HIV , HIV-1 , Aprendizado de Máquina , HIV-1/imunologia , Humanos , Anticorpos Anti-HIV/imunologia , Anticorpos Neutralizantes/imunologia , Infecções por HIV/virologia , Infecções por HIV/imunologia , Antígenos CD4/metabolismo , Antígenos CD4/imunologia , Sequência de Aminoácidos , Proteína gp120 do Envelope de HIV/imunologia , Proteína gp120 do Envelope de HIV/química
5.
Nat Commun ; 15(1): 4301, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38773089

RESUMO

The vaccine elicitation of HIV tier-2-neutralization antibodies has been a challenge. Here, we report the isolation and characterization of a CD4-binding site (CD4bs) specific monoclonal antibody, HmAb64, from a human volunteer immunized with a polyvalent DNA prime-protein boost HIV vaccine. HmAb64 is derived from heavy chain variable germline gene IGHV1-18 and light chain germline gene IGKV1-39. It has a third heavy chain complementarity-determining region (CDR H3) of 15 amino acids. On a cross-clade panel of 208 HIV-1 pseudo-virus strains, HmAb64 neutralized 20 (10%), including tier-2 strains from clades B, BC, C, and G. The cryo-EM structure of the antigen-binding fragment of HmAb64 in complex with a CNE40 SOSIP trimer revealed details of its recognition; HmAb64 uses both heavy and light CDR3s to recognize the CD4-binding loop, a critical component of the CD4bs. This study demonstrates that a gp120-based vaccine can elicit antibodies capable of tier 2-HIV neutralization.


Assuntos
Vacinas contra a AIDS , Anticorpos Neutralizantes , Antígenos CD4 , Anticorpos Anti-HIV , HIV-1 , Humanos , Vacinas contra a AIDS/imunologia , HIV-1/imunologia , Anticorpos Anti-HIV/imunologia , Anticorpos Neutralizantes/imunologia , Antígenos CD4/imunologia , Antígenos CD4/metabolismo , Vacinas de DNA/imunologia , Anticorpos Monoclonais/imunologia , Infecções por HIV/prevenção & controle , Infecções por HIV/imunologia , Infecções por HIV/virologia , Microscopia Crioeletrônica , Proteína gp120 do Envelope de HIV/imunologia , Proteína gp120 do Envelope de HIV/química , Sítios de Ligação , Regiões Determinantes de Complementaridade/imunologia , Regiões Determinantes de Complementaridade/química
6.
Adv Sci (Weinh) ; 11(26): e2309268, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38704686

RESUMO

Broadly neutralizing antibodies are proposed as therapeutic and prophylactic agents against HIV-1, but their potency and breadth are less than optimal. This study describes the immunization of a llama with the prefusion-stabilized HIV-1 envelope (Env) trimer, BG505 DS-SOSIP, and the identification and improvement of potent neutralizing nanobodies recognizing the CD4-binding site (CD4bs) of vulnerability. Two of the vaccine-elicited CD4bs-targeting nanobodies, G36 and R27, when engineered into a triple tandem format with llama IgG2a-hinge region and human IgG1-constant region (G36×3-IgG2a and R27×3-IgG2a), neutralized 96% of a multiclade 208-strain panel at geometric mean IC80s of 0.314 and 0.033 µg mL-1, respectively. Cryo-EM structures of these nanobodies in complex with Env trimer revealed the two nanobodies to neutralize HIV-1 by mimicking the recognition of the CD4 receptor. To enhance their neutralizing potency and breadth, nanobodies are linked to the light chain of the V2-apex-targeting broadly neutralizing antibody, CAP256V2LS. The resultant human-llama bispecific antibody CAP256L-R27×3LS exhibited ultrapotent neutralization and breadth exceeding other published HIV-1 broadly neutralizing antibodies, with pharmacokinetics determined in FcRn-Fc mice similar to the parent CAP256V2LS. Vaccine-elicited llama nanobodies, when combined with V2-apex broadly neutralizing antibodies, may therefore be able to fulfill anti-HIV-1 therapeutic and prophylactic clinical goals.


Assuntos
Anticorpos Biespecíficos , Anticorpos Neutralizantes , Camelídeos Americanos , HIV-1 , Animais , HIV-1/imunologia , Humanos , Anticorpos Biespecíficos/imunologia , Camelídeos Americanos/imunologia , Anticorpos Neutralizantes/imunologia , Anticorpos Anti-HIV/imunologia , Infecções por HIV/imunologia , Infecções por HIV/prevenção & controle , Camundongos
7.
JCI Insight ; 9(7)2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38587079

RESUMO

BACKGROUNDBroadly neutralizing monoclonal antibodies (bNAbs) represent a promising strategy for HIV-1 immunoprophylaxis and treatment. 10E8VLS and VRC07-523LS are bNAbs that target the highly conserved membrane-proximal external region (MPER) and the CD4-binding site of the HIV-1 viral envelope glycoprotein, respectively.METHODSIn this phase 1, open-label trial, we evaluated the safety and pharmacokinetics of 5 mg/kg 10E8VLS administered alone, or concurrently with 5 mg/kg VRC07-523LS, via s.c. injection to healthy non-HIV-infected individuals.RESULTSEight participants received either 10E8VLS alone (n = 6) or 10E8VLS and VRC07-523LS in combination (n = 2). Five (n = 5 of 8, 62.5%) participants who received 10E8VLS experienced moderate local reactogenicity, and 1 participant (n = 1/8, 12.5%) experienced severe local reactogenicity. Further trial enrollment was stopped, and no participant received repeat dosing. All local reactogenicity resolved without sequelae. 10E8VLS retained its neutralizing capacity, and no functional anti-drug antibodies were detected; however, a serum t1/2 of 8.1 days was shorter than expected. Therefore, the trial was voluntarily stopped per sponsor decision (Vaccine Research Center, National Institute of Allergy and Infectious Diseases [NIAID], NIH). Mechanistic studies performed to investigate the underlying reason for the reactogenicity suggest that multiple mechanisms may have contributed, including antibody aggregation and upregulation of local inflammatory markers.CONCLUSION10E8VLS resulted in unexpected reactogenicity and a shorter t1/2 in comparison with previously tested bNAbs. These studies may facilitate identification of nonreactogenic second-generation MPER-targeting bNAbs, which could be an effective strategy for HIV-1 immunoprophylaxis and treatment.TRIAL REGISTRATIONClinicaltrials.gov, accession no. NCT03565315.FUNDINGDivision of Intramural Research, National Institute of Allergy and Infectious Diseases, NIH.


Assuntos
Infecções por HIV , Soropositividade para HIV , HIV-1 , Humanos , Infecções por HIV/tratamento farmacológico , Infecções por HIV/prevenção & controle , Anticorpos Anti-HIV , Anticorpos Amplamente Neutralizantes/farmacologia , Anticorpos Monoclonais/farmacologia
8.
Cell Rep ; 43(3): 113948, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38483908

RESUMO

Identifying individual functional B cell receptors (BCRs) is common, but two-dimensional analysis of B cell frequency versus BCR potency would delineate both quantity and quality of antigen-specific memory B cells. We efficiently determine quantitative BCR neutralizing activities using a single-cell-derived antibody supernatant analysis (SCAN) workflow and develop a frequency-potency algorithm to estimate B cell frequencies at various neutralizing activity or binding affinity cutoffs. In an HIV-1 fusion peptide (FP) immunization study, frequency-potency curves elucidate the quantity and quality of FP-specific immunoglobulin G (IgG)+ memory B cells for different animals, time points, and antibody lineages at single-cell resolution. The BCR neutralizing activities are mainly determined by their affinities to soluble envelope trimer. Frequency analysis definitively demonstrates dominant neutralizing antibody lineages. These findings establish SCAN and frequency-potency analyses as promising approaches for general B cell analysis and monoclonal antibody (mAb) discovery. They also provide specific rationales for HIV-1 FP-directed vaccine optimization.


Assuntos
Infecções por HIV , Soropositividade para HIV , HIV-1 , Animais , Anticorpos Neutralizantes , Anticorpos Anti-HIV , Imunoglobulina G , Células B de Memória
9.
iScience ; 27(2): 108877, 2024 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-38318357

RESUMO

Soluble 'SOSIP'-stabilized HIV-1 envelope glycoprotein (Env) trimers elicit dominant antibody responses targeting their glycan-free base regions, potentially diminishing neutralizing responses. Previously, using a nonhuman primate model, we demonstrated that priming with fusion peptide (FP)-carrier conjugate immunogens followed by boosting with Env trimers reduced the anti-base response. Further, we demonstrated that longer immunization intervals further reduced anti-base responses and increased neutralization breadth. Here, we demonstrate that long trimer-boosting intervals, but not long FP immunization intervals, reduce the anti-base response. Additionally, we identify that FP priming before trimer immunization enhances antibody avidity to the Env trimer. We also establish that adjuvants Matrix M and Adjuplex further reduce anti-base responses and increase neutralizing titers. FP priming, long trimer-immunization interval, and an appropriate adjuvant can thus reduce anti-base antibody responses and improve Env-directed vaccine outcomes.

10.
Sci Transl Med ; 16(730): eadh9039, 2024 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-38232141

RESUMO

The fusion peptide (FP) on the HIV-1 envelope (Env) trimer can be targeted by broadly neutralizing antibodies (bNAbs). Here, we evaluated the ability of a human FP-directed bNAb, VRC34.01, along with two vaccine-elicited anti-FP rhesus macaque mAbs, DFPH-a.15 and DF1W-a.01, to protect against simian-HIV (SHIV)BG505 challenge. VRC34.01 neutralized SHIVBG505 with a 50% inhibitory concentration (IC50) of 0.58 µg/ml, whereas DF1W-a.01 and DFPH-a.15 were 4- or 30-fold less potent, respectively. VRC34.01 was infused into four rhesus macaques at a dose of 10 mg/kg and four rhesus macaques at a dose of 2.5 mg/kg. The animals were intrarectally challenged 5 days later with SHIVBG505. In comparison with all 12 control animals that became infected, all four animals infused with VRC34.01 (10 mg/kg) and three out of four animals infused with VRC34.01 (2.5 mg/kg) remained uninfected. Because of the lower potency of DF1W-a.01 and DFPH-a.15 against SHIVBG505, we infused both Abs at a higher dose of 100 mg/kg into four rhesus macaques each, followed by SHIVBG505 challenge 5 days later. Three of four animals that received DF1W-a.01 were protected against infection, whereas all animals that received DFPH-a.15 were protected. Overall, the protective serum neutralization titers observed in these animals were similar to what has been observed for other bNAbs in similar SHIV infection models and in human clinical trials. In conclusion, FP-directed mAbs can thus provide dose-dependent in vivo protection against mucosal SHIV challenges, supporting the development of prophylactic vaccines targeting the HIV-1 Env FP.


Assuntos
Vacinas contra a AIDS , Infecções por HIV , HIV-1 , Síndrome de Imunodeficiência Adquirida dos Símios , Vírus da Imunodeficiência Símia , Animais , Humanos , Macaca mulatta , Anticorpos Amplamente Neutralizantes , Anticorpos Anti-HIV/uso terapêutico , Infecções por HIV/prevenção & controle , Anticorpos Monoclonais , Peptídeos , Anticorpos Neutralizantes
11.
Nat Commun ; 14(1): 7593, 2023 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-37989731

RESUMO

The HIV-1 fusion peptide (FP) represents a promising vaccine target, but global FP sequence diversity among circulating strains has limited anti-FP antibodies to ~60% neutralization breadth. Here we evolve the FP-targeting antibody VRC34.01 in vitro to enhance FP-neutralization using site saturation mutagenesis and yeast display. Successive rounds of directed evolution by iterative selection of antibodies for binding to resistant HIV-1 strains establish a variant, VRC34.01_mm28, as a best-in-class antibody with 10-fold enhanced potency compared to the template antibody and ~80% breadth on a cross-clade 208-strain neutralization panel. Structural analyses demonstrate that the improved paratope expands the FP binding groove to accommodate diverse FP sequences of different lengths while also recognizing the HIV-1 Env backbone. These data reveal critical antibody features for enhanced neutralization breadth and potency against the FP site of vulnerability and accelerate clinical development of broad HIV-1 FP-targeting vaccines and therapeutics.


Assuntos
Infecções por HIV , HIV-1 , Humanos , HIV-1/genética , Anticorpos Anti-HIV , Anticorpos Neutralizantes , Peptídeos , Sequência de Aminoácidos , Vacinas de Subunidades Antigênicas , Testes de Neutralização , Produtos do Gene env do Vírus da Imunodeficiência Humana
12.
bioRxiv ; 2023 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-37986823

RESUMO

Waning immunity and continued virus evolution have limited the durability of protection from symptomatic infection mediated by intramuscularly (IM)-delivered mRNA vaccines against COVID-19 although protection from severe disease remains high. Mucosal vaccination has been proposed as a strategy to increase protection at the site of SARS-CoV-2 infection by enhancing airway immunity, potentially reducing rates of infection and transmission. Here, we compared protection against XBB.1.16 virus challenge 5 months following IM or mucosal boosting in non-human primates (NHP) that had previously received a two-dose mRNA-1273 primary vaccine regimen. The mucosal boost was composed of a bivalent chimpanzee adenoviral-vectored vaccine encoding for both SARS-CoV-2 WA1 and BA.5 spike proteins (ChAd-SARS-CoV-2-S) and delivered either by an intranasal mist or an inhaled aerosol. An additional group of animals was boosted by the IM route with bivalent WA1/BA.5 spike-matched mRNA (mRNA-1273.222) as a benchmark control. NHP were challenged in the upper and lower airways 18 weeks after boosting with XBB.1.16, a heterologous Omicron lineage strain. Cohorts boosted with ChAd-SARS-CoV-2-S by an aerosolized or intranasal route had low to undetectable virus replication as assessed by levels of subgenomic SARS-CoV-2 RNA in the lungs and nose, respectively. In contrast, animals that received the mRNA-1273.222 boost by the IM route showed minimal protection against virus replication in the upper airway but substantial reduction of virus RNA levels in the lower airway. Immune analysis showed that the mucosal vaccines elicited more durable antibody and T cell responses than the IM vaccine. Protection elicited by the aerosolized vaccine was associated with mucosal IgG and IgA responses, whereas protection elicited by intranasal delivery was mediated primarily by mucosal IgA. Thus, durable immunity and effective protection against a highly transmissible heterologous variant in both the upper and lower airways can be achieved by mucosal delivery of a virus-vectored vaccine. Our study provides a template for the development of mucosal vaccines that limit infection and transmission against respiratory pathogens.

13.
Res Sq ; 2023 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-37886518

RESUMO

The vaccine elicitation of HIV-neutralizing antibodies with tier-2-neutralization breadth has been a challenge. Here, we report the isolation and characteristics of a CD4-binding site specific monoclonal antibody, HmAb64, from a human volunteer immunized with a polyvalent gp120 DNA prime-protein boost vaccine. HmAb64 derived from heavy chain variable germline gene IGHV1-18, light chain germline gene IGKV1-39, and had a 3rd heavy chain complementarity determining region (CDR H3) of 15 amino acids. On a cross-clade panel of 208 HIV-1 pseudo-virus strains, HmAb64 neutralized 21 (10%), including tier-2 neutralization resistant strains from clades B, BC, C, and G. The cryo-EM structure of the antigen-binding fragment of HmAb64 bound to a conformation between prefusion closed and occluded open forms of envelope trimer, using both heavy and light CDR3s to recognize the CD4-binding loop, a critical component of the CD4-binding site. A gp120 subunit-based vaccine can thus elicit an antibody capable of tier 2-HIV neutralization.

14.
iScience ; 26(8): 107403, 2023 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-37554450

RESUMO

Soluble HIV-1-envelope (Env) trimers elicit immune responses that target their solvent-exposed protein bases, the result of removing these trimers from their native membrane-bound context. To assess whether glycosylation could limit these base responses, we introduced sequons encoding potential N-linked glycosylation sites (PNGSs) into base-proximal regions. Expression and antigenic analyses indicated trimers bearing six-introduced PNGSs to have reduced base recognition. Cryo-EM analysis revealed trimers with introduced PNGSs to be prone to disassembly and introduced PNGS to be disordered. Protein-base and glycan-base trimers induced reciprocally symmetric ELISA responses, in which only a small fraction of the antibody response to glycan-base trimers recognized protein-base trimers and vice versa. EM polyclonal epitope mapping revealed glycan-base trimers -even those that were stable biochemically- to elicit antibodies that recognized disassembled trimers. Introduced glycans can thus mask the protein base but their introduction may yield neo-epitopes that dominate the immune response.

15.
Cell Rep ; 42(7): 112755, 2023 07 25.
Artigo em Inglês | MEDLINE | ID: mdl-37436899

RESUMO

Elicitation of antibodies that neutralize the tier-2 neutralization-resistant isolates that typify HIV-1 transmission has been a long-sought goal. Success with prefusion-stabilized envelope trimers eliciting autologous neutralizing antibodies has been reported in multiple vaccine-test species, though not in humans. To investigate elicitation of HIV-1 neutralizing antibodies in humans, here, we analyze B cells from a phase I clinical trial of the "DS-SOSIP"-stabilized envelope trimer from strain BG505, identifying two antibodies, N751-2C06.01 and N751-2C09.01 (named for donor-lineage.clone), that neutralize the autologous tier-2 strain, BG505. Though derived from distinct lineages, these antibodies form a reproducible antibody class that targets the HIV-1 fusion peptide. Both antibodies are highly strain specific, which we attribute to their partial recognition of a BG505-specific glycan hole and to their binding requirements for a few BG505-specific residues. Prefusion-stabilized envelope trimers can thus elicit autologous tier-2 neutralizing antibodies in humans, with initially identified neutralizing antibodies recognizing the fusion-peptide site of vulnerability.


Assuntos
Vacinas contra a AIDS , Infecções por HIV , Soropositividade para HIV , HIV-1 , Humanos , Anticorpos Neutralizantes , Produtos do Gene env do Vírus da Imunodeficiência Humana , Anticorpos Anti-HIV , Peptídeos
16.
Cell Rep ; 42(7): 112711, 2023 07 25.
Artigo em Inglês | MEDLINE | ID: mdl-37436900

RESUMO

Broadly neutralizing antibodies (bNAbs) against HIV can reduce viral transmission in humans, but an effective therapeutic will require unusually high breadth and potency of neutralization. We employ the OSPREY computational protein design software to engineer variants of two apex-directed bNAbs, PGT145 and PG9RSH, resulting in increases in potency of over 100-fold against some viruses. The top designed variants improve neutralization breadth from 39% to 54% at clinically relevant concentrations (IC80 < 1 µg/mL) and improve median potency (IC80) by up to 4-fold over a cross-clade panel of 208 strains. To investigate the mechanisms of improvement, we determine cryoelectron microscopy structures of each variant in complex with the HIV envelope trimer. Surprisingly, we find the largest increases in breadth to be a result of optimizing side-chain interactions with highly variable epitope residues. These results provide insight into mechanisms of neutralization breadth and inform strategies for antibody design and improvement.


Assuntos
Infecções por HIV , Soropositividade para HIV , HIV-1 , Humanos , Anticorpos Anti-HIV , Anticorpos Neutralizantes , Anticorpos Amplamente Neutralizantes , Microscopia Crioeletrônica , Testes de Neutralização
17.
MAbs ; 15(1): 2223350, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37345226

RESUMO

The amino-acid composition of the immunoglobulin variable region has been observed to impact antibody pharmacokinetics (PK). Here, we sought to improve the PK of the broad HIV-1-neutralizing VRC01-class antibodies, VRC07-523LS and N6LS, by reducing the net positive charge in their variable domains. We used a structure-guided approach to generate a panel of antibody variants incorporating select Arg or Lys substituted to Asp, Gln, Glu, or Ser. The engineered variants exhibited reduced affinity to heparin, reduced polyreactivity, and improved PK in human FcRn-transgenic mice. One variant, VRC07-523LS.v34, with three charge substitutions, had an observed in vivo half-life and an estimated human half-life of 10.8 and 60 days, respectively (versus 5.4 and 38 days for VRC07-523LS) and retained functionality, neutralizing 92% of a 208-strain panel at a geometric mean IC80 <1 µg/mL. Another variant, N6LS.C49, with two charge substitutions, had an observed in vivo half-life and an estimated human half-life of 14.5 and 80 days (versus 9.0 and 44 days for N6LS) and neutralized ~80% of 208 strains at a geometric mean IC80 <1 µg/mL. Since Arg and Lys residues are prevalent in human antibodies, we propose substitution of select Arg or Lys with Asp, Gln, Glu, or Ser in the framework region as a general means to improve PK of therapeutic antibodies.


Assuntos
Infecções por HIV , HIV-1 , Humanos , Camundongos , Animais , Anticorpos Anti-HIV , Anticorpos Amplamente Neutralizantes , Camundongos Transgênicos , Infecções por HIV/tratamento farmacológico , Anticorpos Neutralizantes
18.
Nat Commun ; 14(1): 3719, 2023 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-37349337

RESUMO

Agents that can simultaneously activate latent HIV, increase immune activation and enhance the killing of latently-infected cells represent promising approaches for HIV cure. Here, we develop and evaluate a trispecific antibody (Ab), N6/αCD3-αCD28, that targets three independent proteins: (1) the HIV envelope via the broadly reactive CD4-binding site Ab, N6; (2) the T cell antigen CD3; and (3) the co-stimulatory molecule CD28. We find that the trispecific significantly increases antigen-specific T-cell activation and cytokine release in both CD4+ and CD8+ T cells. Co-culturing CD4+ with autologous CD8+ T cells from ART-suppressed HIV+ donors with N6/αCD3-αCD28, results in activation of latently-infected cells and their elimination by activated CD8+ T cells. This trispecific antibody mediates CD4+ and CD8+ T-cell activation in non-human primates and is well tolerated in vivo. This HIV-directed antibody therefore merits further development as a potential intervention for the eradication of latent HIV infection.


Assuntos
Infecções por HIV , HIV-1 , Animais , Linfócitos T CD8-Positivos , Linfócitos T CD4-Positivos , Latência Viral , Anticorpos Anti-HIV
19.
J Virol ; 97(5): e0160422, 2023 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-37098956

RESUMO

While neutralizing antibodies that target the HIV-1 fusion peptide have been elicited in mice by vaccination, antibodies reported thus far have been from only a single antibody class that could neutralize ~30% of HIV-1 strains. To explore the ability of the murine immune system to generate cross-clade neutralizing antibodies and to investigate how higher breadth and potency might be achieved, we tested 17 prime-boost regimens that utilized diverse fusion peptide-carrier conjugates and HIV-1 envelope trimers with different fusion peptides. We observed priming in mice with fusion peptide-carrier conjugates of variable peptide length to elicit higher neutralizing responses, a result we confirmed in guinea pigs. From vaccinated mice, we isolated 21 antibodies, belonging to 4 distinct classes of fusion peptide-directed antibodies capable of cross-clade neutralization. Top antibodies from each class collectively neutralized over 50% of a 208-strain panel. Structural analyses - both X-ray and cryo-EM - revealed each antibody class to recognize a distinct conformation of fusion peptide and to have a binding pocket capable of accommodating diverse fusion peptides. Murine vaccinations can thus elicit diverse neutralizing antibodies, and altering peptide length during prime can improve the elicitation of cross-clade responses targeting the fusion peptide site of HIV-1 vulnerability. IMPORTANCE The HIV-1 fusion peptide has been identified as a site for elicitation of broadly neutralizing antibodies, with prior studies demonstrating that priming with fusion peptide-based immunogens and boosting with soluble envelope (Env) trimers can elicit cross-clade HIV-1-neutralizing responses. To improve the neutralizing breadth and potency of fusion peptide-directed responses, we evaluated vaccine regimens that incorporated diverse fusion peptide-conjugates and Env trimers with variation in fusion peptide length and sequence. We found that variation in peptide length during prime elicits enhanced neutralizing responses in mice and guinea pigs. We identified vaccine-elicited murine monoclonal antibodies from distinct classes capable of cross-clade neutralization and of diverse fusion peptide recognition. Our findings lend insight into improved immunogens and regimens for HIV-1 vaccine development.


Assuntos
Vacinas contra a AIDS , Infecções por HIV , Soropositividade para HIV , HIV-1 , Animais , Cobaias , Camundongos , Anticorpos Anti-HIV , Isotipos de Imunoglobulinas , Vacinação , Peptídeos , Anticorpos Neutralizantes , Anticorpos Amplamente Neutralizantes , Produtos do Gene env do Vírus da Imunodeficiência Humana , Infecções por HIV/prevenção & controle
20.
Ann N Y Acad Sci ; 1524(1): 65-86, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37020354

RESUMO

The COVID-19 pandemic has taught us many things, among the most important of which is that vaccines are one of the cornerstones of public health that help make modern longevity possible. While several different vaccines have been successful at stemming the morbidity and mortality associated with various infectious diseases, many pathogens/diseases remain recalcitrant to the development of effective vaccination. Recent advances in vaccine technology, immunology, structural biology, and other fields may yet yield insight that will address these diseases; they may also help improve societies' preparedness for future pandemics. On June 1-4, 2022, experts in vaccinology from academia, industry, and government convened for the Keystone symposium "Progress in Vaccine Development for Infectious Diseases" to discuss state-of-the-art technologies, recent advancements in understanding vaccine-mediated immunity, and new aspects of antigen design to aid vaccine effectiveness.


Assuntos
COVID-19 , Doenças Transmissíveis , Vacinas , Humanos , Pandemias/prevenção & controle , COVID-19/prevenção & controle , Vacinas/uso terapêutico , Vacinação , Desenvolvimento de Vacinas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA