Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
1.
Chem Biol Interact ; : 111047, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38735454

RESUMO

Lung adenocarcinoma stands as a leading global cause of cancer-related fatalities, with current therapeutic approaches remaining unsatisfactory. Given the association between elevated oxidative markers and the aggressive nature of cancer cells (including multidrug resistance and metastatic potential) that can predict poor outcome of lung adenocarcinoma patients, any compounds that interfere with their aberrant redox biology should be rationally explored as innovative intervention strategies. This study was designed to screen potential anticancer activities within nine newly synthesized organochalcogen - compounds characterized by the presence of oxygen, sulfur, or selenium elements in their structure and exhibiting antioxidant activity - and systematically evaluated their performance against cisplatin, the cornerstone therapeutic agent for lung adenocarcinoma. Our methodology involved the establishment of optimal conditions for generating single tumor spheroids using A549 human lung adenocarcinoma cell line. The initiation interval for spheroid formation was determined to be four days in vitro (DIV), and these single spheroids demonstrated sustained growth over a period of 20 DIV. Toxic dose-response curves were subsequently performed for each compound after 24 and 48 hours of incubation at the 12nd DIV. Our findings reveal that at least two of the synthetic organochalcogen compounds exhibited noteworthy anticancer activity, surpassing cisplatin in key parameters such as lower LD (Lethal Dose) 50, larger drug activity area, and maximum amplitude of effect, and are promising drugs for futures studies in the treatment of lung adenocarcinomas. Physicochemical descriptors and prediction ADME (absorption, distribution, metabolism, and excretion) parameters of selected compounds were obtained using SwissADME computational tool; Molinspiration server was used to calculate a biological activity score, and possible molecule targets were evaluated by prediction with the SwissTargetPrediction server. This research not only sheds light on novel avenues for therapeutic exploration but also underscores the potential of synthetic organochalcogen compounds as agents with superior efficacy compared to established treatments.

2.
Molecules ; 28(18)2023 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-37764472

RESUMO

The understanding that zidovudine (ZDV or azidothymidine, AZT) inhibits the RNA-dependent RNA polymerase (RdRp) of SARS-CoV-2 and that chalcogen atoms can increase the bioactivity and reduce the toxicity of AZT has directed our search for the discovery of novel potential anti-coronavirus compounds. Here, the antiviral activity of selenium and tellurium containing AZT derivatives in human type II pneumocytes cell model (Calu-3) and monkey kidney cells (Vero E6) infected with SARS-CoV-2, and their toxic effects on these cells, was evaluated. Cell viability analysis revealed that organoselenium (R3a-R3e) showed lower cytotoxicity than organotellurium (R3f, R3n-R3q), with CC50 ≥ 100 µM. The R3b and R3e were particularly noteworthy for inhibiting viral replication in both cell models and showed better selectivity index. In Vero E6, the EC50 values for R3b and R3e were 2.97 ± 0.62 µM and 1.99 ± 0.42 µM, respectively, while in Calu-3, concentrations of 3.82 ± 1.42 µM and 1.92 ± 0.43 µM (24 h treatment) and 1.33 ± 0.35 µM and 2.31 ± 0.54 µM (48 h) were observed, respectively. The molecular docking calculations were carried out to main protease (Mpro), papain-like protease (PLpro), and RdRp following non-competitive, competitive, and allosteric inhibitory approaches. The in silico results suggested that the organoselenium is a potential non-competitive inhibitor of RdRp, interacting in the allosteric cavity located in the palm region. Overall, the cell-based results indicated that the chalcogen-zidovudine derivatives were more potent than AZT in inhibiting SARS-CoV-2 replication and that the compounds R3b and R3e play an important inhibitory role, expanding the knowledge about the promising therapeutic capacity of organoselenium against COVID-19.


Assuntos
COVID-19 , Selênio , Humanos , Antivirais/farmacologia , Zidovudina , Simulação de Acoplamento Molecular , SARS-CoV-2 , Papaína , Peptídeo Hidrolases , RNA Polimerase Dependente de RNA , Selênio/farmacologia
3.
Exp Parasitol ; 253: 108601, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37625643

RESUMO

Trichomoniasis is a sexually transmitted infection caused by the protozoan Trichomonas vaginalis. Currently, trichomoniasis is treated with the class of nitroimidazoles, namely, metronidazole; however, resistant isolates and strains have been reported. The compounds derived from benzofuroxan are biologically active heterocycles. This study evaluated the in vitro antiparasitic activity of these compounds in trophozoites of T. vaginalis and determined the mean inhibitory concentration (IC50), minimum inhibitory concentration (MIC), mortality curve, and cytotoxicity. The compounds were named EH1, EH2, EH3, and EA2 and tested in various concentrations: 100 to 15 µM (EH1 and EH2); 100 to 5 µM (EH3); and 100 to 25 µM (EA2), respectively. The greatest efficacy was observed in the highest concentrations in 24 h, with inhibition of approximately 100% of trophozoites. Compounds EH2 and EH3 had the lowest MIC: EH2 (35 µM) and EH3 (45 µM), with IC50 of 11.33 µM and 6.83 µM, respectively. Compound EA2 was effective at the highest concentrations. The activity of the compounds in T. vaginalis started in the first hour of incubation with 90% inhibition; after 12 h, inhibition >95% was observed. Compound EH1 showed the lowest activity, with the highest activity between 12 and 24 h after incubation. These results demonstrate that benzofuroxan derivatives are promising compounds for the in vitro treatment of T. vaginalis.


Assuntos
Nitroimidazóis , Tricomoníase , Animais , Antiparasitários , Testes de Sensibilidade Microbiana , Trofozoítos
4.
Curr Med Chem ; 30(21): 2449-2462, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36065927

RESUMO

BACKGROUND: This study presents the synthesis and multi-target behavior of the new 5'-hydroxy-3-(chalcogenyl-triazoyl)-thymidine and the biological evaluation of these compounds as antioxidant and anti-HIV agents. OBJECTIVE: Antiretroviral therapy induces oxidative stress. Based on this, this manuscript's main objective is to prepare compounds that combine anti-HIV and antioxidant activities. METHODS: The compounds were prepared from commercially available AZT through a copper-catalyzed Huisgen 1,3-dipolar cycloaddition exploiting the AZT azide group and chalcogenyl alkynes. RESULTS: The chalcogenium-AZT derivatives were obtained in good yields via click chemistry. The compounds evaluated showed antioxidant and anti-HIV activity. Additionally, in vivo toxicity of this class of compounds was also evaluated. The representative nucleoside did not change the survival, behavior, biochemical hepatic, or renal markers compared to the control mice. CONCLUSION: Data suggest the feasibility of modifying the AZT nucleus with simple organohalogen fragments, exploring the reactivity of the azide group via 1,3-dipolar Huisgen cycloaddition reaction. The design of these new compounds showed the initially desired biological activities.


Assuntos
Fármacos Anti-HIV , Infecções por HIV , Animais , Camundongos , Antioxidantes/farmacologia , Antioxidantes/uso terapêutico , Azidas/química , Fármacos Anti-HIV/farmacologia , Fármacos Anti-HIV/uso terapêutico , Fármacos Anti-HIV/química , Infecções por HIV/tratamento farmacológico , Estresse Oxidativo , Zidovudina/farmacologia , Zidovudina/metabolismo
5.
Exp Parasitol ; 226-227: 108125, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34129877

RESUMO

Chagas disease, caused by Trypanosoma cruzi, is a major public health problem and is described as one of the most neglected diseases worldwide. It affects about 6-7 million people. Currently, only two drugs are available for the treatment of this disease: nifurtimox and benznidazole. However, both drugs are highly toxic and have several side effects, which lead many patients to discontinue treatment. Moreover, these compounds show a significant curative efficacy only in the acute phase of the disease. Therefore, searching for new drugs is necessary. The objective of this study was to evaluate the in vitro and in vivo activity of a benzofuroxan derivative (EA2) against T. cruzi, and to evaluate the hematological and biochemical changes induced by its treatment in animals infected with T. cruzi. The results were then compared with those of healthy controls. In vitro testing was first performed with T. cruzi epimastigote forms. In this experiment, EA2 was diluted at three different concentrations (0.25, 0.50, and 1%). In vitro evaluation of the trypanocidal activity was performed 24, 48, and 72 h after incubation. In vivo assays were performed using three different doses (10, 5, and 2,5 mg/kg). Mice were divided into 10 groups (five animals/group), wherein four groups comprised non-infected animals (A, G, H, I) and six groups comprised infected animals (B, C, D E, F, J). Groups B and J represented the negative and positive controls, respectively. Groups G, H, and I were used to confirm that EA2 was not toxic to non-infected animals. Parasitemia was measured in infected animals and the hematological and biochemical profiles (urea, creatinine, albumin, aspartate aminotransferase, alanine aminotransferase, and alkaline phosphatase) were evaluated in all animals. EA2 demonstrated in vitro trypanocidal activity at all concentrations tested. Although it did not demonstrate a curative effect in vivo, EA2 was able to retard the onset of parasitemia, and significantly reduced the parasite count in groups D and E (treated with 5 and 2.5 mg/kg, respectively). EA2 did not induce changes in hematological and biochemical parameters in non-infected animals, demonstrating that it is not toxic. However, further assessments should aim to confirm the safety of EA2 since this was the first in vitro and in vivo study conducted with this molecule.


Assuntos
Benzofuranos/uso terapêutico , Doença de Chagas/tratamento farmacológico , Parasitemia/tratamento farmacológico , Tripanossomicidas/uso terapêutico , Trypanosoma cruzi/efeitos dos fármacos , Animais , Benzofuranos/farmacologia , Análise Química do Sangue , Doença de Chagas/sangue , Contagem de Eritrócitos , Feminino , Hemoglobinas/análise , Camundongos , Parasitemia/sangue , Contagem de Plaquetas , Distribuição Aleatória , Tripanossomicidas/farmacologia , Trypanosoma cruzi/crescimento & desenvolvimento
6.
Bioorg Med Chem ; 28(9): 115423, 2020 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-32205047

RESUMO

Approximately 90% of bladder carcinomas are of the urothelial carcinoma type, which are characterized by high rates of recurrence and predisposition to progress to invasive tumors, representing one of the most costly neoplasms for health systems. Intravesical chemotherapy is a standard for the treatment of non-invasive bladder cancer. However, chemotherapy is usually aggressive and cytotoxic, which increases the death rates caused by cancer. Heterocyclic compounds which exhibit favorable pharmacokinetic and pharmacodynamic properties may enhance drug affinity for a target protein by targeting the treatment. Thus, this work presents the synthesis, characterization, and in vitro biological evaluation of new antioxidant (inhibition of lipid peroxidation, scavenging of free radical DPPH, and thiol peroxidase-like activity) and antiproliferative chalcogenobiotin derivatives and tests them against bladder carcinoma 5637 cells. A prominent response was obtained for the selected compounds, with tellurium biotin derivatives displaying effective antioxidant and antiproliferative activity. The effective compounds also demonstrated no toxicity in in vitro or in vivo studies.


Assuntos
Antineoplásicos/farmacologia , Antioxidantes/farmacologia , Calcogênios/farmacologia , Neoplasias da Bexiga Urinária/tratamento farmacológico , Bexiga Urinária/efeitos dos fármacos , Antineoplásicos/síntese química , Antineoplásicos/química , Antioxidantes/síntese química , Antioxidantes/química , Compostos de Bifenilo/antagonistas & inibidores , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Calcogênios/síntese química , Calcogênios/química , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Peroxidação de Lipídeos/efeitos dos fármacos , Estrutura Molecular , Picratos/antagonistas & inibidores , Relação Estrutura-Atividade , Bexiga Urinária/patologia , Neoplasias da Bexiga Urinária/patologia
7.
Bioorg Chem ; 98: 103727, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32179285

RESUMO

Organic selenium compounds are widely associated with numerous pharmacological properties. However, selenium compounds, such as Ebselen (Ebs) and Diphenyl Diselenide (DPDS), could interact with mitochondrial respiratory complexes, especially with thiol groups. The present study evaluated whether the insertion of functional groups, o-methoxy, and p-methyl on organic selenium compounds promotes changes in mitochondrial functioning parameters and whether this is related to antibacterial activity. Here we tested some in vitro parameters after the exposure of mitochondria to different concentrations of ß-selenoamines 1-phenyl-3-(p-tolylselanyl)propan-2-amine (C1) and 1-(2-methoxyphenylselanyl)-3-phenylpropan-2-amine (C2) and analogs of DPDS 1,2-bis(2-methoxyphenyl)diselenide (C3) and 1,2-bisp-tolyldiselenide (C4). We also evaluated the antibacterial activity of ß-selenoamines and diselenides against Methicillin-resistant Staphylococcus aureus and Escherichia coli. Our results showed that o-methoxy insertion increased the antioxidant properties, without affecting the mitochondrial membrane potential. The compounds with a p-methyl insertion affected the mitochondrial membrane potential and significantly decreased the State III respiration and RCR. Besides, the p-methyl compounds presented antibacterial activity at lower concentrations than those shown in o-methoxy, precisely by the same mechanism that promotes damage to thiol groups and better absorption in gram-positive bacteria due to their relationship with cell wall constituents. Finally, our study confirms that structural modifications in organic selenium compounds provide changes in mitochondrial functioning but also raise their antibacterial effect. This strategy can be used as a target for the development of new enough potent antibacterial to restrict the advance of resistant bacterial infections.


Assuntos
Antibacterianos/farmacologia , Escherichia coli/efeitos dos fármacos , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , Mitocôndrias Hepáticas/efeitos dos fármacos , Compostos Organosselênicos/farmacologia , Animais , Antibacterianos/síntese química , Antibacterianos/química , Relação Dose-Resposta a Droga , Masculino , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Testes de Sensibilidade Microbiana , Estrutura Molecular , Compostos Organosselênicos/síntese química , Compostos Organosselênicos/química , Ratos , Ratos Wistar , Relação Estrutura-Atividade
8.
Neurotoxicology ; 74: 272-281, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31415799

RESUMO

The signal transmission in the nervous system operates through a sensitive balance between excitatory (E) inputs and inhibitory (I) responses. Imbalances in this system contribute to the development of pathologies such as seizures. In Caenorhabditis elegans, the locomotor circuit operates via the coordinated activity of cholinergic excitatory (E) and GABAergic inhibitory (I) transmission. Changes in E/I inputs can cause uncontrolled electrical discharges, mimicking the physiology of seizures. Molecules derived from 1,3,4-oxadiazole have been found to exhibit diverse biological activities, including anticonvulsant effect. In this work, we study the activity of the compound 2-[(4-methoxyphenylselenyl)methylthio]-5-phenyl-1,3,4-oxadiazole (MPMT-OX) in the GABAergic and cholinergic systems. We demonstrate that MPMT-OX reduced the locomotor activity of C. elegans with a normal balance between the E/I systems and increased the resistance to paralysis in worms exposed to pentylenetetrazol and aldicarb. MPMT-OX increased seizure resistance and assisted in the recovery of locomotor activity in worms with deletions in the genes unc-46, which regulates the transport of GABA into vesicles, and unc-49, which encodes the GABAA receptor. C. elegans with deletions in the unc-25 and unc-47 genes did not respond to treatment. Therefore, we suggest that the compound MPMT-OX upregulates GABAergic signaling in a manner dependent on the unc-25 gene, which is responsible for GABA synthesis, and unc-47, which encodes the vesicular GABA transporter.


Assuntos
Comportamento Animal/efeitos dos fármacos , Caenorhabditis elegans , Agonistas GABAérgicos/farmacologia , Oxidiazóis/farmacologia , Convulsões/prevenção & controle , Transmissão Sináptica/efeitos dos fármacos , Animais , Proteínas de Caenorhabditis elegans/biossíntese , Proteínas de Caenorhabditis elegans/genética , Fenômenos Eletrofisiológicos/efeitos dos fármacos , Locomoção/efeitos dos fármacos , Sistema Nervoso Parassimpático/efeitos dos fármacos , Convulsões/induzido quimicamente , Convulsões/psicologia , Vesículas Sinápticas/efeitos dos fármacos , Ácido gama-Aminobutírico/fisiologia
9.
Molecules ; 23(10)2018 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-30308960

RESUMO

A new protocol for the preparation of thioaryl-porphyrins is described. The compounds were prepared from different disulfides employing NaBH4 as a reducing agent. The methodology allowed the preparation of four different thioaryl-porphyrins in very-good to excellent yields under soft conditions, such as short reaction times and smooth heating. Additionally, the photophysical properties of new compounds were determined and experimental and theoretical DNA interactions were assessed.


Assuntos
DNA/química , Luz , Porfirinas/síntese química , Cinética , Simulação de Acoplamento Molecular , Porfirinas/química , Teoria Quântica , Oxigênio Singlete/química , Espectrometria de Fluorescência , Espectrofotometria Ultravioleta
10.
J Biochem Mol Toxicol ; 31(12)2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28800171

RESUMO

Thioacetamide (TAA) is a hepatotoxin that rapidly triggers the necrotic process and oxidative stress in the liver. Nevertheless, organic selenium compounds, such as ß-selenoamines, can be used as pharmacological agents to diminish the oxidative damage. Thus, the aim of this study was to investigate the protective effect of the antioxidant ß-selenoamines on TAA-induced oxidative stress in mice. Here, we observed that a single intraperitoneal injection of TAA (200 mg/kg) dramatically elevated some parameters of oxidative stress, such as lipid peroxidation and reactive oxygen species (ROS) production, as well as depleted cellular antioxidant defenses. In addition, TAA-induced edema and morphological changes in the liver, which correlate with high serum aspartate and alanine aminotransferase enzyme activities, and a decrease in cell viability. Conversely, a significant reduction in liver lipid peroxidation, ROS production, and edema was observed in animals that received an intraperitoneal injection of ß-selenoamines (15.6 mg/kg) 1 h after TAA administration.


Assuntos
Antioxidantes/farmacologia , Doença Hepática Induzida por Substâncias e Drogas/prevenção & controle , Fígado/efeitos dos fármacos , Compostos Organosselênicos/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Aminas/farmacologia , Animais , Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Avaliação Pré-Clínica de Medicamentos , Glutationa/metabolismo , Glutationa Peroxidase/metabolismo , Glutationa Transferase/metabolismo , Peroxidação de Lipídeos , Fígado/enzimologia , Fígado/patologia , Masculino , Camundongos , Espécies Reativas de Oxigênio/metabolismo , Tioacetamida
11.
Medchemcomm ; 8(2): 408-414, 2017 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-30108758

RESUMO

This article presents the preparation and in vitro biological activities of new 5'-arylchalcogeno-3-aminothymidine derivatives as antioxidants (inhibition of lipid peroxidation, scavenging of the free radical 2,2-diphenylpicrylhydrazyl and demonstration of a thiol peroxidase-like activity) as well as antitumoral agents against bladder carcinoma 5637. The chalcogeno-aminothymidines presented prominent activity in the tests for both biological properties, showing a direct relation with the chalcogenium atom.

12.
J Med Chem ; 58(8): 3329-39, 2015 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-25811955

RESUMO

In this article we present the synthesis, characterization, and in vitro biological and biochemical activities of new chalcogenozidovudine derivatives as antioxidant (inhibition of TBARS in brain membranes and thiol peroxidase-like activity) as well as antitumoral agents in bladder carcinoma 5637. A prominent response was obtained for the selected chalcogenonucleosides, showing effective antioxidant and antitumoral activities.


Assuntos
Antineoplásicos/química , Antioxidantes/química , Calcogênios/química , Neoplasias da Bexiga Urinária/tratamento farmacológico , Zidovudina/química , Animais , Antineoplásicos/síntese química , Antineoplásicos/farmacologia , Antioxidantes/síntese química , Antioxidantes/farmacologia , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Calcogênios/síntese química , Calcogênios/farmacologia , Humanos , Masculino , Ratos Wistar , Substâncias Reativas com Ácido Tiobarbitúrico/metabolismo , Bexiga Urinária/efeitos dos fármacos , Bexiga Urinária/metabolismo , Bexiga Urinária/patologia , Neoplasias da Bexiga Urinária/metabolismo , Neoplasias da Bexiga Urinária/patologia , Zidovudina/síntese química , Zidovudina/farmacologia
13.
Toxicol Rep ; 2: 961-967, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26726309

RESUMO

Organic selenium compounds possess numerous biological properties, including antioxidant activity. Yet, the high toxicity of some of them, such as diphenyl diselenide (DPDS), is a limiting factor in their current usage. Accordingly, we tested four novel organic selenium compounds in the non-parasite nematode Caenorhabditis elegans and compared their efficacy to DPDS. The novel organic selenium compounds are ß-selenoamines (1-phenyl-3-(p-tolylselanyl)propan-2-amine (C1) and 1-(2-methoxyphenylselanyl)-3-phenylpropan-2-amine (C2) and analogs of DPDS (1,2-bis (2-methoxyphenyl) diselenide (C3) and 1,2-bisp-tolyldiselenide (C4). Synchronized worms at the L4 larval stage were exposed for one hour in M9 buffer to these compounds. Oxidative stress conditions were induced by juglone (200 µM) and heat shock (35 °C). Moreover, we evaluated Caenorhabditis elegans behavior, GST-4::GFP (glutathione S-transferase) expression and the activity of acetylcholinesterase (AChE). All tested compounds efficiently restored viability in juglone stressed worms. However, DPDS, C2, C3 and C4 significantly decreased the defecation cycle time. Juglone-induced GST-4::GFP expression was not attenuated in worms pretreated with the novel compounds, except with C2. Finally, AChE activity was reduced by DPDS, C2, C3 and C4. To our knowledge, this is study firstly showed the effects of C1, C2, C3 and C4 selenium-derived compounds in Caenorhabditis elegans. Low toxic effects were noted, except for reduction in the defecation cycle, which is likely associated with AChE inhibition. The juglone-induced stress (reduced viability) was fully reversed by compounds to control animal levels. C2 was also efficient in reducing the juglone-induced GST-4::GFP expression, suggesting the latter may mediate the stress induced by this compound. Future studies could be profitably directed at addressing additional molecular mechanisms that mediate the protective effects of these novel organic selenium compounds.

14.
Appl Biochem Biotechnol ; 172(2): 755-66, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24122626

RESUMO

Over the past years, organoselenium compounds have been aimed as targets of interest in organic synthesis. Diphenyl diselenide [(PhSe)2] is an important example of this class showing several pharmacological properties. However, the poor water-solubility and its low oral bioavailability may be considered an obstruction for the clinical utility of this compound. For this reason, the use of nanocapsules is a prominent approach to increase the bioavailability of lipophylic molecules. This study aims to prepare diphenyl diselenide-loaded nanocapsules with two different concentrations, by interfacial deposition of the preformed polymer in order to develop a system to improve its oral bioavailability. The drug-loaded nanocapsules with 1.56 and 5 mg ml−1 and unloaded nanocapsule suspensions presented macroscopic homogeneous aspect, as well as submicronic sizes, low polydispersity, negative zeta potentials and slightly acid or neutral pH values. The biological tests of selenium distribution in different tissues of mice show a higher bioavailability of the (PhSe)2 nanocapsules when compared with the free (PhSe)2, both administered by per oral route at the dose of 50 mg/kg, showing a prominent influence of the nanocarries systems for biological properties of this organochalcogenium compound.


Assuntos
Derivados de Benzeno/farmacologia , Nanocápsulas/química , Compostos Organosselênicos/farmacologia , Tecido Adiposo/efeitos dos fármacos , Tecido Adiposo/metabolismo , Animais , Derivados de Benzeno/administração & dosagem , Fenômenos Químicos/efeitos dos fármacos , Masculino , Camundongos , Compostos Organosselênicos/administração & dosagem , Tamanho da Partícula , Selênio/sangue , Eletricidade Estática , Distribuição Tecidual/efeitos dos fármacos
15.
Org Biomol Chem ; 11(31): 5173-83, 2013 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-23820619

RESUMO

The synthesis of new chiral seleno-, telluro-, and thio-N-Boc-γ-amino acids is described herein. These new compounds were prepared through a simple and short synthetic route, from the inexpensive and commercially-available amino acid L-glutamic acid. The products, with a highly modular character, were obtained in good to excellent yields, via hydrolysis of chalcogen pyroglutamic derivatives with overall retention of the L-glutamic acid stereochemistry. Also, an L-diselenide-N-Boc-γ-amino acid was prepared in good yield. This new synthetic route represents an efficient method for preparing new L-chalcogen- and L-diselenide-γ-amino acids with biological potential.


Assuntos
Ácidos Carboxílicos/síntese química , Calcogênios/síntese química , Compostos Organosselênicos/síntese química , Compostos de Sulfidrila/síntese química , Aminoácidos/síntese química , Aminoácidos/química , Ácidos Carboxílicos/química , Calcogênios/química , Estrutura Molecular , Compostos Organosselênicos/química , Compostos de Sulfidrila/química
16.
Toxicol In Vitro ; 27(5): 1433-9, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23499633

RESUMO

This study was designed to examine the antioxidant activity in vitro of novel mono- and diselenide compounds. We compared whether the formation of p-methyl-selenol from compounds 1-phenyl-3-(p-tolylselanyl)propan-2-amine (C1) and 1,2-dip-tolyldiselenide (C4) and o-methoxy-selenol from compounds 1-(2-methoxyphenylselanyl)-3-phenylpropan-2-amine (C2) and 1,2-bis(2-methoxyphenyl)diselenide (C3) may be involved in their antioxidant effects. The compounds were tested against Fe(II) and sodium nitroprusside (SNP)-induced lipid peroxidation in rat brain and liver homogenates. Likewise, the antioxidant capacity of the compounds was assessed by their ability to decolorize the DPPH radical as well as the Fe(II) chelating assay through the reduction of molybdenum(VI) (Mo6+) to molybdenum(V) (Mo5+). This colorimetric assay was also used to quantify thiol peroxidase (GPx) and oxidase activity and thioredoxin reductase (TrxR) activity. The results showed that the novel selenide compounds inhibit the thiobarbituric acid reactive species (TBARS) induced by different pro-oxidants, but the monoselenides effects were significant only at concentrations higher than the concentrations of the diselenides. Similarly, the total antioxidant activity was higher in the diselenides. Moreover, GPx and TrxR activity was only observed for the diselenides, which indicates that these compounds are more stable selenol molecules than monoselenides.


Assuntos
Antioxidantes/farmacologia , Encéfalo/efeitos dos fármacos , Fígado/efeitos dos fármacos , Compostos Organosselênicos/farmacologia , Animais , Encéfalo/metabolismo , Glutationa Peroxidase/metabolismo , Peroxidação de Lipídeos/efeitos dos fármacos , Fígado/metabolismo , Masculino , NADP/metabolismo , Oxirredução , Ratos , Ratos Wistar , Substâncias Reativas com Ácido Tiobarbitúrico/metabolismo , Tiorredoxina Redutase 1/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA