Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
J Mol Cell Cardiol ; 185: 65-76, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37844837

RESUMO

Hypertrophic cardiomyopathy (HCM) is frequently caused by mutations in the cardiac myosin binding protein-C (cMyBP-C) encoding gene MYBPC3. In the Netherlands, approximately 25% of patients carry the MYBPC3c.2373InsG founder mutation. Most patients are heterozygous (MYBPC3+/InsG) and have highly variable phenotypic expression, whereas homozygous (MYBPC3InsG/InsG) patients have severe HCM at a young age. To improve understanding of disease progression and genotype-phenotype relationship based on the hallmarks of human HCM, we characterized mice with CRISPR/Cas9-induced heterozygous and homozygous mutations. At 18-28 weeks of age, we assessed the cardiac phenotype of Mybpc3+/InsG and Mybpc3InsG/InsG mice with echocardiography, and performed histological analyses. Cytoskeletal proteins and cardiomyocyte contractility of 3-4 week old and 18-28 week old Mybpc3c.2373InsG mice were compared to wild-type (WT) mice. Expectedly, knock-in of Mybpc3c.2373InsG resulted in the absence of cMyBP-C and our 18-28 week old homozygous Mybpc3c.2373InsG model developed cardiac hypertrophy and severe left ventricular systolic and diastolic dysfunction, whereas HCM was not evident in Mybpc3+/InsG mice. Mybpc3InsG/InsG cardiomyocytes also presented with slowed contraction-relaxation kinetics, to a greater extent in 18-28 week old mice, partially due to increased levels of detyrosinated tubulin and desmin, and reduced cardiac troponin I (cTnI) phosphorylation. Impaired cardiomyocyte contraction-relaxation kinetics were successfully normalized in 18-28 week old Mybpc3InsG/InsG cardiomyocytes by combining detyrosination inhibitor parthenolide and ß-adrenergic receptor agonist isoproterenol. Both the 3-4 week old and 18-28 week old Mybpc3InsG/InsG models recapitulate HCM, with a severe phenotype present in the 18-28 week old model.


Assuntos
Cardiomiopatia Hipertrófica , Proteínas de Transporte , Humanos , Camundongos , Animais , Países Baixos , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Mutação , Fenótipo , Proteínas do Citoesqueleto/genética
2.
J Comp Physiol B ; 193(5): 581-595, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37644284

RESUMO

Employing animal models to study heart failure (HF) has become indispensable to discover and test novel therapies, but their translatability remains challenging. Although cytoskeletal alterations are linked to HF, the tubulin signature of common experimental models has been incompletely defined. Here, we assessed the tubulin signature in a large set of human cardiac samples and myocardium of animal models with cardiac remodeling caused by pressure overload, myocardial infarction or a gene defect. We studied levels of total, acetylated, and detyrosinated α-tubulin and desmin in cardiac tissue from hypertrophic (HCM) and dilated cardiomyopathy (DCM) patients with an idiopathic (n = 7), ischemic (n = 7) or genetic origin (n = 59), and in a pressure-overload concentric hypertrophic pig model (n = 32), pigs with a myocardial infarction (n = 28), mature pigs (n = 6), and mice (n = 15) carrying the HCM-associated MYBPC32373insG mutation. In the human samples, detyrosinated α-tubulin was increased 4-fold in end-stage HCM and 14-fold in pediatric DCM patients. Acetylated α-tubulin was increased twofold in ischemic patients. Across different animal models, the tubulin signature remained mostly unaltered. Only mature pigs were characterized by a 0.5-fold decrease in levels of total, acetylated, and detyrosinated α-tubulin. Moreover, we showed increased desmin levels in biopsies from NYHA class II HCM patients (2.5-fold) and the pressure-overload pig model (0.2-0.3-fold). Together, our data suggest that desmin levels increase early on in concentric hypertrophy and that animal models only partially recapitulate the proliferated and modified tubulin signature observed clinically. Our data warrant careful consideration when studying maladaptive responses to changes in the tubulin content in animal models.

3.
Front Cardiovasc Med ; 8: 612215, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33732734

RESUMO

Background: Sex-differences in clinical presentation contribute to the phenotypic heterogeneity of hypertrophic cardiomyopathy (HCM) patients. While disease prevalence is higher in men, women present with more severe diastolic dysfunction and worse survival. Until today, little is known about the cellular differences underlying sex-differences in clinical presentation. Methods: To define sex-differences at the protein level, we performed a proteomic analysis in cardiac tissue obtained during myectomy surgery to relieve left ventricular outflow tract obstruction of age-matched female and male HCM patients harboring a sarcomere mutation (n = 13 in both groups). Furthermore, these samples were compared to 8 non-failing controls. Women presented with more severe diastolic dysfunction. Results: Out of 2099 quantified proteins, direct comparison of male, and female HCM samples revealed only 46 significantly differentially expressed proteins. Increased levels of tubulin and heat shock proteins were observed in female compared to male HCM patients. Western blot analyses confirmed higher levels of tubulin in female HCM samples. In addition, proteins involved in carbohydrate metabolism were significantly lower in female compared to male samples. Furthermore, we found lower levels of translational proteins specifically in male HCM samples. The disease-specificity of these changes were confirmed by a second analysis in which we compared female and male samples separately to non-failing control samples. Transcription factor analysis showed that sex hormone-dependent transcription factors may contribute to differential protein expression, but do not explain the majority of protein changes observed between male and female HCM samples. Conclusion: In conclusion, based on our proteomics analyses we propose that increased levels of tubulin partly underlie more severe diastolic dysfunction in women compared to men. Since heat shock proteins have cardioprotective effects, elevated levels of heat shock proteins in females may contribute to later disease onset in woman, while reduced protein turnover in men may lead to the accumulation of damaged proteins which in turn affects proper cellular function.

4.
Circ Heart Fail ; 14(1): e007022, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33430602

RESUMO

BACKGROUND: Hypertrophic cardiomyopathy (HCM) is the most common genetic heart disease. While ≈50% of patients with HCM carry a sarcomere gene mutation (sarcomere mutation-positive, HCMSMP), the genetic background is unknown in the other half of the patients (sarcomere mutation-negative, HCMSMN). Genotype-specific differences have been reported in cardiac function. Moreover, HCMSMN patients have later disease onset and a better prognosis than HCMSMP patients. To define if genotype-specific derailments at the protein level may explain the heterogeneity in disease development, we performed a proteomic analysis in cardiac tissue from a clinically well-phenotyped HCM patient group. METHODS: A proteomics screen was performed in cardiac tissue from 39 HCMSMP patients, 11HCMSMN patients, and 8 nonfailing controls. Patients with HCM had obstructive cardiomyopathy with left ventricular outflow tract obstruction and diastolic dysfunction. A novel MYBPC32373insG mouse model was used to confirm functional relevance of our proteomic findings. RESULTS: In all HCM patient samples, we found lower levels of metabolic pathway proteins and higher levels of extracellular matrix proteins. Levels of total and detyrosinated α-tubulin were markedly higher in HCMSMP than in HCMSMN and controls. Higher tubulin detyrosination was also found in 2 unrelated MYBPC3 mouse models and its inhibition with parthenolide normalized contraction and relaxation time of isolated cardiomyocytes. CONCLUSIONS: Our findings indicate that microtubules and especially its detyrosination contribute to the pathomechanism of patients with HCMSMP. This is of clinical importance since it represents a potential treatment target to improve cardiac function in patients with HCMSMP, whereas a beneficial effect may be limited in patients with HCMSMN.


Assuntos
Cardiomiopatia Hipertrófica/metabolismo , Tubulina (Proteína)/metabolismo , Tirosina/metabolismo , Obstrução do Fluxo Ventricular Externo/metabolismo , Adulto , Idoso , Animais , Miosinas Cardíacas/genética , Cardiomiopatia Hipertrófica/genética , Cardiomiopatia Hipertrófica/fisiopatologia , Proteínas de Transporte/genética , Estudos de Casos e Controles , Modelos Animais de Doenças , Feminino , Haploinsuficiência , Humanos , Masculino , Pessoa de Meia-Idade , Cadeias Pesadas de Miosina/genética , Proteômica , Sarcômeros/genética , Troponina I/genética , Troponina T/genética , Obstrução do Fluxo Ventricular Externo/genética , Obstrução do Fluxo Ventricular Externo/fisiopatologia , Septo Interventricular/metabolismo
5.
Int J Cardiol ; 323: 251-258, 2021 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-32882290

RESUMO

Background - Variants within the alpha-tropomyosin gene (TPM1) cause dominantly inherited cardiomyopathies, including dilated (DCM), hypertrophic (HCM) and restrictive (RCM) cardiomyopathy. Here we investigated whether TPM1 variants observed in DCM and HCM patients affect cardiomyocyte physiology differently. Methods - We identified a large family with DCM carrying a recently identified TPM1 gene variant (T201M) and a child with RCM with compound heterozygote TPM1 variants (E62Q and M281T) whose family members carrying single variants show diastolic dysfunction and HCM. The effects of TPM1 variants (T201M, E62Q or M281T) and of a plasmid containing both the E62Q and M281T variants on single-cell Ca2+ transients (CaT) in HL-1 cardiomyocytes were studied. To define toxic threshold levels, we performed dose-dependent transfection of TPM1 variants. In addition, cardiomyocyte structure was studied in human cardiac biopsies with TPM1 variants. Results - Overexpression of TPM1 variants led to time-dependent progressive deterioration of CaT, with the smallest effect seen for E62Q and larger and similar effects seen for the T201M and M281T variants. Overexpression of E62Q/M281T did not exacerbate the effects seen with overexpression of a single TPM1 variant. T201M (DCM) replaced endogenous tropomyosin dose-dependently, while M281T (HCM) did not. Human cardiac biopsies with TPM1 variants revealed loss of sarcomeric structures. Conclusion - All TPM1 variants result in reduced cardiomyocyte CaT amplitudes and loss of sarcomeric structures. These effects may underlie pathophysiology of different cardiomyopathy phenotypes.


Assuntos
Cardiomiopatias , Cardiomiopatia Dilatada , Cardiomiopatia Hipertrófica , Tropomiosina/genética , Cardiomiopatias/genética , Cardiomiopatia Hipertrófica/diagnóstico por imagem , Cardiomiopatia Hipertrófica/genética , Humanos , Mutação , Miócitos Cardíacos , Fenótipo
6.
Cell Stem Cell ; 27(1): 50-63.e5, 2020 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-32619518

RESUMO

Modulating signaling pathways including Wnt and Hippo can induce cardiomyocyte proliferation in vivo. Applying these signaling modulators to human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) in vitro can expand CMs modestly (<5-fold). Here, we demonstrate massive expansion of hiPSC-CMs in vitro (i.e., 100- to 250-fold) by glycogen synthase kinase-3ß (GSK-3ß) inhibition using CHIR99021 and concurrent removal of cell-cell contact. We show that GSK-3ß inhibition suppresses CM maturation, while contact removal prevents CMs from cell cycle exit. Remarkably, contact removal enabled 10 to 25 times greater expansion beyond GSK-3ß inhibition alone. Mechanistically, persistent CM proliferation required both LEF/TCF activity and AKT phosphorylation but was independent from yes-associated protein (YAP) signaling. Engineered heart tissues from expanded hiPSC-CMs showed comparable contractility to those from unexpanded hiPSC-CMs, demonstrating uncompromised cellular functionality after expansion. In summary, we uncovered a molecular interplay that enables massive hiPSC-CM expansion for large-scale drug screening and tissue engineering applications.


Assuntos
Células-Tronco Pluripotentes Induzidas , Diferenciação Celular , Células Cultivadas , Glicogênio Sintase Quinase 3 beta , Humanos , Miócitos Cardíacos
7.
Cells ; 8(7)2019 07 18.
Artigo em Inglês | MEDLINE | ID: mdl-31323898

RESUMO

Hypertrophic cardiomyopathy (HCM) is the most common inherited cardiac disorder. It is mainly caused by mutations in genes encoding sarcomere proteins. Mutant forms of these highly abundant proteins likely stress the protein quality control (PQC) system of cardiomyocytes. The PQC system, together with a functional microtubule network, maintains proteostasis. We compared left ventricular (LV) tissue of nine donors (controls) with 38 sarcomere mutation-positive (HCMSMP) and 14 sarcomere mutation-negative (HCMSMN) patients to define HCM and mutation-specific changes in PQC. Mutations in HCMSMP result in poison polypeptides or reduced protein levels (haploinsufficiency, HI). The main findings were 1) several key PQC players were more abundant in HCM compared to controls, 2) after correction for sex and age, stabilizing heat shock protein (HSP)B1, and refolding, HSPD1 and HSPA2 were increased in HCMSMP compared to controls, 3) α-tubulin and acetylated α-tubulin levels were higher in HCM compared to controls, especially in HCMHI, 4) myosin-binding protein-C (cMyBP-C) levels were inversely correlated with α-tubulin, and 5) α-tubulin levels correlated with acetylated α-tubulin and HSPs. Overall, carrying a mutation affects PQC and α-tubulin acetylation. The haploinsufficiency of cMyBP-C may trigger HSPs and α-tubulin acetylation. Our study indicates that proliferation of the microtubular network may represent a novel pathomechanism in cMyBP-C haploinsufficiency-mediated HCM.


Assuntos
Cardiomiopatia Hipertrófica/metabolismo , Microtúbulos/metabolismo , Resposta a Proteínas não Dobradas , Adulto , Idoso , Cardiomiopatia Hipertrófica/genética , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Chaperonina 60/metabolismo , Feminino , Proteínas de Choque Térmico HSP70/metabolismo , Humanos , Masculino , Microtúbulos/genética , Pessoa de Meia-Idade , Proteínas Mitocondriais/metabolismo , Mutação , Miócitos Cardíacos/metabolismo , Sarcômeros/genética , Sarcômeros/metabolismo , Tubulina (Proteína)/metabolismo
8.
Pflugers Arch ; 471(5): 795-806, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30109411

RESUMO

Mutations in genes encoding sarcomeric proteins are the most important causes of inherited cardiomyopathies, which are a major cause of mortality and morbidity worldwide. Although genetic screening procedures for early disease detection have been improved significantly, treatment to prevent or delay mutation-induced cardiac disease onset is lacking. Recent findings indicate that loss of protein quality control (PQC) is a central factor in the disease pathology leading to derailment of cellular protein homeostasis. Loss of PQC includes impairment of heat shock proteins, the ubiquitin-proteasome system, and autophagy. This may result in accumulation of misfolded and aggregation-prone mutant proteins, loss of sarcomeric and cytoskeletal proteins, and, ultimately, loss of cardiac function. PQC derailment can be a direct effect of the mutation-induced activation, a compensatory mechanism due to mutation-induced cellular dysfunction or a consequence of the simultaneous occurrence of the mutation and a secondary hit. In this review, we discuss recent mechanistic findings on the role of proteostasis derailment in inherited cardiomyopathies, with special focus on sarcomeric gene mutations and possible therapeutic applications.


Assuntos
Cardiomiopatias/genética , Proteostase , Sarcômeros/genética , Animais , Cardiomiopatias/classificação , Cardiomiopatias/metabolismo , Humanos , Mutação , Proteólise , Sarcômeros/metabolismo , Ubiquitinação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA