Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Environ Sci Pollut Res Int ; 30(43): 97253-97266, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37587399

RESUMO

Enrofloxacin (Enro) has been widely encountered in natural water sources, and that water is often used for irrigation in crop production systems. Due to its phytotoxicity and accumulation in plant tissues, the presence of Enro in water used for crop irrigation may represent economical and toxicological concerns. Here, we irrigated two ornamental plant species (Zantedeschia rehmannii Engl. and Spathiphyllum wallisii Regel.) with water artificially contaminated with the antimicrobial enrofloxacin (Enro; 0, 5, 10, 100, and 1000 µg L-1) to evaluate its effects on ornamental plant production, as well as its accumulation and distribution among different plant organs (roots, leaves, bulbs, and flower stems), and examined the economic and environmental safety of commercializing plants produced under conditions of pharmaceutical contamination. The presence of Enro in irrigation water was not found to disrupt plant growth (biomass) or flower production. Both species accumulated Enro, with its internal concentrations distributed as the following: roots > leaves > bulbs > flower stems. In addition to plant tolerance, the content of Enro in plant organs indicated that both Z. rehmannii and S. wallisii could be safety produced under Enro-contaminated conditions and would not significantly contribute to contaminant transfer. The high capacity of those plants to accumulate Enro in their tissues, associated with their tolerance to it, indicates them for use in Enro-phytoremediation programs.


Assuntos
Irrigação Agrícola , Biodegradação Ambiental , Enrofloxacina , Poluição Química da Água , Araceae/metabolismo , Enrofloxacina/metabolismo , Enrofloxacina/toxicidade
2.
Environ Sci Pollut Res Int ; 29(3): 3336-3354, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34766223

RESUMO

Phytoremediation is an eco-friendly and economical technology in which plants are used for the removal of contaminants presents in the urban and rural environment. One of the challenges of the technique is the proper destination of the biomass of plants. In this context, the use of ornamental plants in areas under contamination treatment improves landscape, serving as a tourist option and source of income with high added value. In addition to their high stress tolerance, rapid growth, high biomass production, and good root development, ornamental species are not intended for animal and human food consumption, avoiding the introduction of contaminants into the food web in addition to improving the environments with aesthetic value. Furthermore, ornamental plants provide multiple ecosystem services, and promote human well-being, while contributing to the conservation of biodiversity. In this review, we summarized the main uses of ornamental plants in phytoremediation of contaminated soil, air, and water. We discuss the potential use of ornamental plants in constructed buffer strips aiming to mitigate the contamination of agricultural lands occurring in the vicinity of sources of contaminants. Moreover, we underlie the ecological and health benefits of the use of ornamental plants in urban and rural landscape projects. This study is expected to draw attention to a promising decontamination technology combined with the beautification of urban and rural areas as well as a possible alternative source of income and diversification in horticultural production.


Assuntos
Ecossistema , Poluentes do Solo , Biodegradação Ambiental , Biomassa , Humanos , Plantas , Poluentes do Solo/análise
3.
Plant Physiol Biochem ; 146: 238-248, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31765955

RESUMO

Plants respond to low temperature stress during cold acclimation, a complex process involving changes in physiological and biochemical modifications. The rose serves as a good model to investigate low temperature responses in perennial ornamentals. In this study, a heterologous apple microarray is used to investigate genome-wide expression profiles in Rosa hybrida subjected to low temperature dark treatment. Transcriptome profiles are determined in floral buds at 0h, 2h, and 12h of low temperature treatment (4 °C). It is observed that a total of 134 transcripts are up-regulated and 169 transcripts are down-regulated in response to low temperature. Interestingly, a total of eight up-regulated genes, including those coding for two cytochrome P450 proteins, two ankyrin repeat family proteins, two metal ion binding proteins, and two zinc finger protein-related transcription factors, along with a single down-regulated gene, coding for a dynamin-like protein, are detected. Transcript profiles of 12 genes known to be involved in cold stress response are also validated using qRT-PCR. Furthermore, expression patterns of the AP2/ERF gene family of transcription factors are investigated in both floral buds and leaves. Overall, AP2/ERFs genes are more rapidly induced in leaves than in floral buds. Moreover, differential expression of several AP2/ERF genes are detected earlier in vegetative rather than in reproductive tissues. These findings highlight important roles of various low temperature response genes in mediating cold acclimation, thereby allowing roses to adapt to low temperatures, but without adversely affecting flower bud development and subsequent flowering, while vegetative tissues undergo early adaptation to low temperatures.


Assuntos
Rosa , Temperatura Baixa , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Genoma de Planta , Proteínas de Plantas , Temperatura , Transcriptoma
4.
3 Biotech ; 9(4): 145, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30944792

RESUMO

The effect of silver nanoparticles (AgNPs) on plant cells, since their phytotoxicity potential is not yet fully understood. In this context, the aim of the present study was to elucidate the effects of AgNPs in the in vitro culture of Physalis peruviana. For this purpose, P. peruviana seeds were grown in MS medium supplemented with different concentrations of AgNPs. Growth and development of seedlings were evaluated through germination, seedling size and biomass and biochemical and anatomical analyses. At the end of 60 days of cultivation, it was observed that the in vitro germination of this species is not affected by the presence of AgNPs and that at low concentrations (0.385 mg L-1) it can promote an increase in seedlings biomass. However, higher concentration (15.4 mg L-1) leads to a reduction in seedling size and root system, but no changes were observed in the seedlings antioxidant metabolism and anatomy. These results demonstrate that the phytotoxicity of AgNPs in P. peruviana is related to the concentration of nanoparticles to which the specie is exposed.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA