Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Behav Brain Res ; 465: 114941, 2024 05 08.
Artigo em Inglês | MEDLINE | ID: mdl-38447760

RESUMO

BACKGROUND: Chronic cerebral hypoperfusion in vascular dementia leads to memory and motor deficits; Physical exercise improves these aspects and promotes neuroprotection. Sexual dimorphism may significantly influence both ischemic and exercise outcomes. AIMS: The aim of this study was to investigate the effects of 2VO (Two-Vessel occlusion) and the acrobatic training on motor function, functional performance, and tissue loss in male and female rats. METHODS: Male and female rats were randomly divided into 4 groups: sham acrobatic, sham sedentary, 2VO acrobatic and 2VO sedentary. After 45 days of 2VO surgery, the animals received 4 weeks of acrobatic training. At the end, open field, beam balance and horizontal ladder tests were performed. Brain samples were taken for histological and morphological evaluation. RESULTS: Spontaneous motor activity in the open field was not affected by 2VO, on the other hand, an impairment in forelimb placement was observed after 2VO and acrobatic training prevented errors and improved hindlimb placement. Neuronal loss was found in the motor cortex and striatum after 2VO, especially in females, which was prevented by acrobatic training. CONCLUSION: Mild motor damage was found in animals after 2VO when refined movement was evaluated, probably associated to neuronal death in the motor cortex and striatum. The acrobatic exercise showed a neuroprotective effect, promoting neuronal survival and attenuating the motor deficit.


Assuntos
Isquemia Encefálica , Demência Vascular , Córtex Motor , Ratos , Animais , Masculino , Feminino , Isquemia Encefálica/patologia , Encéfalo , Isquemia , Modelos Animais de Doenças , Aprendizagem em Labirinto
2.
Exp Neurol ; 374: 114699, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38301864

RESUMO

The congenital Zika syndrome (CZS) has been characterized as a set of several brain changes, such as reduced brain volume and subcortical calcifications, in addition to cognitive deficits. Microcephaly is one of the possible complications found in newborns exposed to Zika virus (ZIKV) during pregnancy, although it is an impacting clinical sign. This study aimed to investigate the consequences of a model of congenital ZIKV infection by evaluating the histopathology, blood-brain barrier, and neuroinflammation in pup rats 24 h after birth, and neurodevelopment of the offspring. Pregnant rats were inoculated subcutaneously with ZIKV-BR at the dose 1 × 107 plaque-forming unit (PFU mL-1) of ZIKV isolated in Brazil (ZIKV-BR) on gestational day 18 (G18). A set of pups, 24 h after birth, was euthanized. The brain was collected and later evaluated for the histopathology of brain structures through histological analysis. Additionally, analyses of the blood-brain barrier were conducted using western blotting, and neuroinflammation was assessed using ELISA. Another set of animals was evaluated on postnatal days 3, 6, 9, and 12 for neurodevelopment by observing the developmental milestones. Our results revealed hippocampal atrophy in ZIKV animals, in addition to changes in the blood-brain barrier structure and pro-inflammatory cytokines expression increase. Regarding neurodevelopment, a delay in important reflexes during the neonatal period in ZIKV animals was observed. These findings advance the understanding of the pathophysiology of CZS and contribute to enhancing the rat model of CZS.


Assuntos
Microcefalia , Complicações Infecciosas na Gravidez , Infecção por Zika virus , Zika virus , Gravidez , Humanos , Feminino , Ratos , Animais , Infecção por Zika virus/complicações , Infecção por Zika virus/diagnóstico , Zika virus/fisiologia , Complicações Infecciosas na Gravidez/patologia , Barreira Hematoencefálica/patologia , Doenças Neuroinflamatórias , Microcefalia/etiologia , Microcefalia/patologia , Atrofia/patologia , Hipocampo/patologia
3.
Behav Brain Res ; 445: 114362, 2023 05 08.
Artigo em Inglês | MEDLINE | ID: mdl-36889464

RESUMO

Promising evidence points to gestational physical exercise as the key to preventing various disorders that affect the offspring neurodevelopment, but there are no studies showing the impact of resistance exercise on offspring health. Thus, the aim of this study was to investigate whether resistance exercise during pregnancy is able to prevent or to alleviate the possible deleterious effects on offspring, caused by early life-stress (ELS). Pregnant rats performed resistance exercise throughout the gestational period:they climbed a sloping ladder with a weight attached to their tail, 3 times a week. Male and female pups, on the day of birth (P0), were divided into 4 experimental groups: 1) rats of sedentary mothers (SED group); 2) rats of exercised mothers (EXE group); 3) rats of sedentary mothers and submitted to maternal separation (ELS group) and 4) rats of exercised mothers and submitted to MS (EXE + ELS group). From P1 to P10, pups from groups 3 and 4 were separated from their mothers for 3 h/day. Maternal behavior was assessed. From P30, behavioral tests were performed and on P38 the animals were euthanized and prefrontal cortex samples were collected. Oxidative stress and tissue damage analysis by Nissl staining were performed. Our results demonstrate that male rats are more susceptible to ELS than females, showing impulsive and hyperactive behavior similar to that seen in children with ADHD. This behavior was attenuated by the gestational resistance exercise. Our results demonstrate, for the first time, that resistance exercise performed during pregnancy seems to be safe for the pregnancy and offspring's neurodevelopment and are effective in preventing ELS-induced damage only in male rats. Interestingly, resistance exercise during pregnancy improved maternal care and it is reasonable to propose that this finding may be related to the protective role on the animals neurodevelopment, observed in our study.


Assuntos
Experiências Adversas da Infância , Treinamento Resistido , Gravidez , Humanos , Ratos , Animais , Feminino , Masculino , Ratos Wistar , Privação Materna , Mães
4.
Int J Dev Neurosci ; 81(1): 60-70, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33135304

RESUMO

Neonatal hypoxia-ischemia (HI) can lead to cognitive impairments and motor dysfunction. Acrobatic exercises (AE) were proposing as therapeutic option to manage HI motor deficits, however, the cognitive effects after this treatment are still poorly understood. Therefore, we evaluated the effects of AE protocol on memory impairments and brain plasticity markers after Rice-Vannucci HI rodent model. Wistar rats on the 7th postnatal day (PND) were submitted to HI model and after weaning (PND22) were trained for 5 weeks with AE protocol, then subsequently submitted to cognitive tests. Our results showed recovery in novel object recognition (NOR) memory, but not, spatial Morris Water Maze (WM) memory after AE treatment in HI rats. BDNF and synaptophysin neuroplasticity markers indicate plastic alterations in the hippocampus and striatum, with maintenance of synaptophysin despite the reduction of total volume tissue, besides, hippocampal HI-induced ipsilateral BDNF increased, and striatum contralateral BDNF decreased were noted. Nevertheless, the exercise promoted functional recovery and seems to be a promising strategy for HI treatment, however, future studies identifying neuroplastic pathway for this improvement are needed.


Assuntos
Hipóxia-Isquemia Encefálica/psicologia , Hipóxia-Isquemia Encefálica/reabilitação , Transtornos da Memória/psicologia , Transtornos da Memória/reabilitação , Condicionamento Físico Animal/psicologia , Reconhecimento Psicológico , Animais , Animais Recém-Nascidos , Atrofia , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Hipocampo/anatomia & histologia , Aprendizagem em Labirinto , Destreza Motora , Neostriado/anatomia & histologia , Desempenho Psicomotor , Ratos , Ratos Wistar , Recuperação de Função Fisiológica , Memória Espacial , Sinaptofisina/metabolismo
5.
Int J Dev Neurosci ; 60: 48-55, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28473192

RESUMO

In an attempt to propose an animal model that reproduces in rats the phenotype of cerebral palsy, this study evaluated the effects of maternal exposure to bacterial endotoxin associated with perinatal asphyxia and sensorimotor restriction on gait pattern, brain and spinal cord morphology. Two experimental groups were used: Control Group (CTG) - offspring of rats injected with saline during pregnancy and Cerebral Palsy Group (CPG) - offspring of rats injected with lipopolysaccharide during pregnancy, submitted to perinatal asphyxia and sensorimotor restriction for 30days. At 29days of age, the CPG exhibited coordination between limbs, weight-supported dorsal steps or weight-supported plantar steps with paw rotation. At 45days of age, CPG exhibited plantar stepping with the paw rotated in the balance phase. An increase in the number of glial cells in the primary somatosensory cortex and dorsal striatum were observed in the CPG, but the corpus callosum thickness and cross-sectional area of lateral ventricle were similar between studied groups. No changes were found in the number of motoneurons, glial cells and soma area of the motoneurons in the ventral horn of spinal cord. The combination of insults in the pre, peri and postnatal periods produced changes in hindlimbs gait pattern of animals similar to those observed in diplegic patients, but motor impairments were attenuated over time. Besides, the greater number of glial cells observed seems to be related to the formation of a glial scar in important sensorimotor brain areas.


Assuntos
Paralisia Cerebral/fisiopatologia , Modelos Animais de Doenças , Transtornos Neurológicos da Marcha/fisiopatologia , Marcha , Córtex Motor/fisiopatologia , Neurônios Motores/patologia , Medula Espinal/fisiopatologia , Animais , Paralisia Cerebral/induzido quimicamente , Paralisia Cerebral/complicações , Feminino , Transtornos Neurológicos da Marcha/induzido quimicamente , Transtornos Neurológicos da Marcha/etiologia , Humanos , Lipopolissacarídeos , Atividade Motora/efeitos dos fármacos , Córtex Motor/efeitos dos fármacos , Córtex Motor/patologia , Neurônios Motores/efeitos dos fármacos , Ratos , Ratos Wistar , Especificidade da Espécie , Medula Espinal/efeitos dos fármacos , Medula Espinal/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA