Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Front Pain Res (Lausanne) ; 3: 1018800, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36387416

RESUMO

Millions of people suffer from arthritis worldwide, consistently struggling with daily activities due to debilitating pain evoked by this disease. Perhaps the most intensively investigated type of inflammatory arthritis is rheumatoid arthritis (RA), where, despite considerable advances in research and clinical management, gaps regarding the neuroimmune interactions that guide inflammation and chronic pain in this disease remain to be clarified. The pain and inflammation associated with arthritis are not isolated to the joints, and inflammatory mechanisms induced by different immune and glial cells in other tissues may affect the development of chronic pain that results from the disease. This review aims to provide an overview of the state-of-the-art research on the roles that innate immune, and glial cells play in the onset and maintenance of arthritis-associated pain, reviewing nociceptive pathways from the joint through the dorsal root ganglion, spinal circuits, and different structures in the brain. We will focus on the cellular mechanisms related to neuroinflammation and pain, and treatments targeting these mechanisms from the periphery and the CNS. A comprehensive understanding of the role these cells play in peripheral inflammation and initiation of pain and the central pathways in the spinal cord and brain will facilitate identifying new targets and pathways to aide in developing therapeutic strategies to treat joint pain associated with RA.

2.
Sci Rep ; 12(1): 16730, 2022 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-36202956

RESUMO

Several recent studies have established the efficacy of photobiomodulation therapy (PBMT) in painful clinical conditions. Diabetic neuropathy (DN) can be related to activating mitogen-activated protein kinases (MAPK), such as p38, in the peripheral nerve. MAPK pathway is activated in response to extracellular stimuli, including interleukins TNF-α and IL-1ß. We verified the pain relief potential of PBMT in streptozotocin (STZ)-induced diabetic neuropathic rats and its influence on the MAPK pathway regulation and calcium (Ca2+) dynamics. We then observed that PBMT applied to the L4-L5 dorsal root ganglion (DRG) region reduced the intensity of hyperalgesia, decreased TNF-α and IL-1ß levels, and p38-MAPK mRNA expression in DRG of diabetic neuropathic rats. DN induced the activation of phosphorylated p38 (p-38) MAPK co-localized with TRPV1+ neurons; PBMT partially prevented p-38 activation. DN was related to an increase of p38-MAPK expression due to proinflammatory interleukins, and the PBMT (904 nm) treatment counteracted this condition. Also, the sensitization of DRG neurons by the hyperglycemic condition demonstrated during the Ca2+ dynamics was reduced by PBMT, contributing to its anti-hyperalgesic effects.


Assuntos
Diabetes Mellitus , Neuropatias Diabéticas , Terapia com Luz de Baixa Intensidade , Animais , Cálcio/metabolismo , Cálcio da Dieta/metabolismo , Diabetes Mellitus/metabolismo , Neuropatias Diabéticas/metabolismo , Neuropatias Diabéticas/radioterapia , Gânglios Espinais/metabolismo , Hiperalgesia , Proteínas Quinases Ativadas por Mitógeno/metabolismo , RNA Mensageiro/metabolismo , Ratos , Ratos Sprague-Dawley , Estreptozocina/farmacologia , Fator de Necrose Tumoral alfa/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
3.
Inflammation ; 45(6): 2280-2293, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35840810

RESUMO

Inflammation is a vital process for the injured tissue restoration and one of its hallmarks is inflammatory hyperalgesia. The cyclooxygenase (COX) pathway is strongly related to the inflammatory and painful process. Usually, the COX-1 isoform is described as homeostatic, while COX-2 is characterized as inducible in inflammatory conditions. Although it is well known that neutrophil cells are the first to arrive at the inflamed site and the major source of COX-2 is still unknown, the specific role of neutrophil-derived COX-2 in the pain process is. Thus, in the present study, we demonstrate for the first time that neutrophil-derived COX-2 plays a key role in peripheral inflammatory hyperalgesia. Conditional knockout mice for COX-2 in neutrophils (COX-2 fl/fl: Mrp8cre±) exhibited higher pain sensitivity after carrageenan (CG) injection and long-lasting IL-1ß-induced hyperalgesia compared with the control group (COX-2 fl/fl). Also, CG-induced inflammation in COX-2 fl/fl: Mrp8cre± mice showed COX-1 overexpression, and increased neutrophil migration and pro-inflammatory cytokines (e.g., IL-1ß and CXCL1). These findings revealed that neutrophil COX-2 has an important role in the regulation of inflammatory hyperalgesia.


Assuntos
Hiperalgesia , Neutrófilos , Animais , Camundongos , Carragenina/farmacologia , Ciclo-Oxigenase 2/metabolismo , Hiperalgesia/induzido quimicamente , Hiperalgesia/metabolismo , Inflamação/induzido quimicamente , Neutrófilos/metabolismo , Dor
4.
J Neurosci Methods ; 371: 109497, 2022 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-35181343

RESUMO

BACKGROUND: The dorsal root ganglion (DRG) is structurally complex and pivotal to systems processing nociception. Whole mount analysis allows examination of intricate microarchitectural and cellular relationships of the DRG in three-dimensional (3D) space. NEW METHOD: We present DRGquant a set of tools and techniques optimized as a pipeline for automated image analysis and reconstruction of cells/structures within the DRG. We have developed an open source software pipeline that utilizes machine learning to identify substructures within the DRG and reliably classify and quantify them. RESULTS: Our methods were sufficiently sensitive to isolate, analyze, and classify individual DRG substructures including macrophages. The activation of macrophages was visualized and quantified in the DRG following intrathecal injection of lipopolysaccharide, and in a model of chemotherapy induced peripheral neuropathy. The percent volume of infiltrating macrophages was similar to a commercial source in quantification. Circulating fluorescent dextran was visualized within DRG macrophages using whole mount preparations, which enabled 3D reconstruction of the DRG and DRGquant demonstrated subcellular spatial resolution within individual macrophages. COMPARISON WITH EXISTING METHOD(S): Here we describe a reliable and efficient methodologic pipeline to prepare cleared and whole mount DRG tissue. DRGquant allows automated image analysis without tedious manual gating to reduce bias. The quantitation of DRG macrophages was superior to commercial solutions. CONCLUSIONS: Using machine learning to separate signal from noise and identify individual cells, DRGquant enabled us to isolate individual structures or areas of interest within the DRG for a more granular and fine-tuned analysis. Using these 3D techniques, we are better able to appreciate the biology of the DRG under experimental inflammatory conditions.


Assuntos
Gânglios Espinais , Macrófagos , Processamento de Imagem Assistida por Computador/métodos , Lipopolissacarídeos , Aprendizado de Máquina
5.
Neurosci Lett ; 736: 135253, 2020 09 25.
Artigo em Inglês | MEDLINE | ID: mdl-32710918

RESUMO

Peripheral neuropathy is a complication of diabetes commonly associated with pain and decline in motor compound action potential, leading to alterations in plantar pressure during gait. We identified motor impairments in streptozotocin (STZ)-induced diabetic neuropathic rats and correlated with mechanical withdrawal thresholds, establishing this correlation as a complementary method to investigate the development of chronic hyperalgesia in diabetic neuropathy. METHODS: UNICAMP's Ethics Committee (protocol number 3902-1) approved all experiments. Male Lewis rats (200-250 g) received a STZ-low-dose (25 mg/kg/day) (STZ group) or 0.1 M sodium citrate buffer (SCB, control group) once a day, during five consecutive days. Diabetic rats (250 mg/dL blood glucose) were submitted to electronic von Frey and CatWalk tests at 0, 7, 14, 21, and 28 days after treatment. RESULTS: STZ, but not SCB, induced diabetes. After the 14th day (STZ)-induced diabetic rats showed mechanical hyperalgesia and a reduction in the hind limbs footprint intensities. At the 28th day, rats presented alterations in spatial parameters (Maximum Contact Area; Stride Length; Print Area), which showed a strong correlation with mechanical withdrawal thresholds (r2 = 0.97; 0.99, and 0.93, respectively). CONCLUSIONS: Correlation between gait parameters and mechanical withdrawal thresholds enables a better experimental approach to evaluate the development of chronic hyperalgesia in the STZ-induced diabetes model. It allows a concise crosstalk of motor and sensorial functions, which are usually analyzed individually. CatWalk gait parameters can be used as a complementary tool to investigate the development of hyperalgesia in STZ-induced diabetic neuropathic rats.


Assuntos
Diabetes Mellitus Experimental , Neuropatias Diabéticas , Análise da Marcha/métodos , Transtornos Neurológicos da Marcha , Hiperalgesia , Animais , Diabetes Mellitus Experimental/complicações , Neuropatias Diabéticas/complicações , Transtornos Neurológicos da Marcha/etiologia , Hiperalgesia/etiologia , Masculino , Ratos , Ratos Endogâmicos Lew
6.
Neuroscience ; 398: 158-170, 2019 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-30537520

RESUMO

Peripheral diabetic neuropathy (PDN) manifests in 50-60% of type I and II diabetic patients and is the major cause of limb amputation. Adequate therapy for PDN is a current challenge. There are evidences that the activation of the P2X4 receptor (P2X4R) expressed on microglial cells of the central nervous system takes part in the development of neuropathic pain. However, there is an open question: Is P2X4R activation on dorsal root ganglia (DRG) involved in the development of neuropathic pain? To answer this question, this study verified the involvement of P2X4R expressed in DRG cells on diabetes-induced neuropathic mechanical hyperalgesia in rats. We found that intrathecal or ganglionar (L5-DRG) administration of a novel P2X4R antagonist (PSB-15417) or intrathecal administration of oligodeoxynucleotides (ODN)-antisense against the P2X4R reversed diabetes-induced neuropathic mechanical hyperalgesia. The DRG of the diabetic neuropathic rats showed an increase in P2X4R expression, and the DRG immunofluorescence suggested that P2X4R is expressed mainly in satellite glial cells (SGC). Finally, our study showed a functional expression of P2X4R in SGCs of the rat's DRG, because the P2X4R agonist BzATP elicits an increase in intracellular calcium concentration in SGCs, which was reduced by PSB-15417. These findings indicate that P2X4R activation in DRG is essential to diabetes-induced neuropathic mechanical hyperalgesia. Therefore, this purinergic receptor in DRG could be an interesting therapeutic target for quaternary P2X4R antagonists that do not cross the hematoencephalic barrier, for the control of neuropathic pain, preserving central nervous system functions.


Assuntos
Diabetes Mellitus Experimental/metabolismo , Neuropatias Diabéticas/metabolismo , Gânglios Espinais/metabolismo , Hiperalgesia/metabolismo , Neuralgia/metabolismo , Receptores Purinérgicos P2X4/metabolismo , Animais , Cálcio/metabolismo , Células Cultivadas , Diabetes Mellitus Experimental/tratamento farmacológico , Diabetes Mellitus Experimental/patologia , Neuropatias Diabéticas/tratamento farmacológico , Neuropatias Diabéticas/patologia , Gânglios Espinais/efeitos dos fármacos , Gânglios Espinais/patologia , Hiperalgesia/tratamento farmacológico , Hiperalgesia/patologia , Masculino , Neuralgia/tratamento farmacológico , Neuralgia/patologia , Neuroglia/efeitos dos fármacos , Neuroglia/metabolismo , Neuroglia/patologia , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Neurônios/patologia , Antagonistas do Receptor Purinérgico P2X , Distribuição Aleatória , Ratos Wistar , Tato
7.
J Ethnopharmacol ; 233: 131-140, 2019 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-30590196

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Tabebuia aurea (Silva Manso) Benth. & Hook. f. ex S. Moore is used as anti-inflammatory, analgesic and antiophidic in traditional medicine, though its pharmacological proprieties are still underexplored. In the bothropic envenoming, pain is a key symptom drove by an intense local inflammatory and neurotoxic event. The antivenom serum therapy is still the main treatment despite its poor local effects against pain and tissue injury. Furthermore, it is limited to ambulatorial niches, giving space for the search of new and more inclusive pharmacological approaches. AIM OF THE STUDY: evaluation of Tabebuia aurea hydroethanolic extract (HEETa) in hyperalgesia and neuronal injury induced by Bothrops mattogrossensis venom (VBm). MATERIALS AND METHODS: Stem barks from Tabebuia aurea were extracted with ethanol and water (7:3, v/v) to yield the extract HEETa. Then, HEETa was analyzed by LC-DAD-MS and its constituents were identified. Snake venoms were extracted from adult specimens of Bothrops mattogrossensis, lyophilized and kept at -20 °C until use. Male Swiss mice, weighting 20-25 g, were used to hyperalgesia (electronic von Frey), motor impairment (Rotarod test) and tissue injury evaluation (histopatology and ATF-3 immunohistochemistry). Therefore, three experimental groups were formed: VBm (1 pg, 1 ng, 0.3 µg, 1 µg, 3 and 6 µg/paw), HEETa orally (180, 540, 720, 810 or 1080 mg/kg; 10 mL/kg, 30 min prior VBm inoculation) and VBm neutralized (VBm: HEETa, 1:100 parts, respectively). In all set of experiments a control (saline group) was used. First, we made a dose-time-response course curve of VBm's induced hyperalgesia. Next, VBm maximum hyperalgesic dose was employed to perform HEETa orally dose-time-response course curve and analyses of VBm neutralized. Paw tissues for histopathology and DRGs were collected from animals inoculated with VBm maximum dose and treated with HEETa antihyperalgesic effective dose or neutralized VBm. Paws were extract two or 72 h after VBm inoculation and DRGs, in the maximum expected time expression of ATF-3 (72 h). RESULTS: From HEETa extract, glycosylated iridoids were identified, such as catalpol, minecoside, verminoside and specioside. VBm induced a time and dose dependent hyperalgesia with its highest effect seen with 3 µg/paw, 2 h after venom inoculation. HEETa effective dose (720 mg/kg) decreased significantly VBm induced hyperalgesia (3 µg/paw) with no motor impairment and signs of acute toxicity. HEETa antihyperalgesic action starts 1.5 h after VBm inoculation and lasted up until 2 h after VBm. Hyperalgesia wasn't reduced by VBm: HEETa neutralization. Histopathology revealed a large hemorragic field 2 h after VBm inoculation and an intense inflammatory infiltrate of polymorphonuclear cells at 72 h. Both HEETa orally and VBm: HEETa groups had a reduced inflammation at 72 h after VBm. Also, the venom significantly induced ATF-3 expression (35.37 ±â€¯3.25%) compared with saline group (4.18 ±â€¯0.68%) which was reduced in HEETa orally (25.87 ±â€¯2.57%) and VBm: HEETa (19.84 ±â€¯2.15%) groups. CONCLUSION: HEETa reduced the hyperalgesia and neuronal injury induced by VBm. These effects could be related to iridoid glycosides detected in HEETa and their intrinsic reported mechanism.


Assuntos
Analgésicos/uso terapêutico , Anti-Inflamatórios/uso terapêutico , Bothrops , Hiperalgesia/tratamento farmacológico , Extratos Vegetais/uso terapêutico , Venenos de Serpentes/toxicidade , Tabebuia , Fator 3 Ativador da Transcrição/metabolismo , Analgésicos/farmacologia , Animais , Anti-Inflamatórios/farmacologia , Gânglios Espinais/lesões , Hiperalgesia/metabolismo , Masculino , Camundongos , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Fitoterapia , Extratos Vegetais/farmacologia , Caules de Planta
8.
Life Sci ; 205: 54-62, 2018 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-29750992

RESUMO

Peripheral diabetic neuropathy (DN) manifests in nearly 60% of diabetic patients, being pain its most debilitating symptom. Although electrophysiological and morphological aspects are well described, little is known about its development and progression, undermining effective therapies. Hyperglycemia and insulin signaling impairment are considered the triggering events of oxidative stress observed in the dying nerves, however there are still many gaps in the knowledge of intracellular plastic changes it generates. AIMS: In this study we aimed to evaluate the early transcriptome changes in DN when the first symptoms of the disease start to appear. MAIN METHODS: Next-Generation Sequencing of messenger RNA (RNA-Seq) of L4 and L5 dorsal root ganglia (DRG) four weeks post-diabetes induction in a rat model for type 1 diabetes. KEY FINDINGS: RNA sequencing found 66 transcripts differentially expressed between diabetic and control groups, related mainly to the following biological processes: inflammation, hyperalgesia/analgesia, cell growth and cell survival. Given their roles, the differentially expressed genes suggest an attempt to switch to a survival/regenerative program. SIGNIFICANCE: Our results show that changes in the transcriptome profile start to appear early in the course of DN and might be related to secure cell homeostasis. Hence, the present data may indicate how DRG cells are responding to hyperglycemia in its early stages and which mechanisms first fail to respond, further leading to cell damage and cell death. Early screening of cell alterations in DN might lead to more concrete targets for pharmaceutical interventions, which could more efficiently delay cell damage.


Assuntos
Neuropatias Diabéticas/genética , Gânglios Espinais/patologia , Perfilação da Expressão Gênica , Regeneração Nervosa/genética , Dor/etiologia , Dor/genética , Animais , Glicemia/metabolismo , Proliferação de Células , Sobrevivência Celular/genética , Diabetes Mellitus Experimental/complicações , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Tipo 1/induzido quimicamente , Diabetes Mellitus Tipo 1/complicações , Neuropatias Diabéticas/patologia , Regulação da Expressão Gênica , Hiperalgesia/etiologia , Hiperalgesia/genética , Hiperalgesia/patologia , Inflamação/etiologia , Inflamação/genética , Inflamação/patologia , Masculino , Limiar da Dor , RNA Mensageiro/biossíntese , RNA Mensageiro/genética , Ratos , Ratos Wistar , Transcriptoma
9.
Eur J Pharmacol ; 798: 113-121, 2017 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-28131783

RESUMO

Cannabinoid system is a potential target for pain control. Cannabinoid receptor 1 (CB1) activation play a role in the analgesic effect of cannabinoids once it is expressed in primary afferent neurons. This study investigates whether the anti-hyperalgesic effect of CB1 receptor activation involves P2X3 receptor in primary afferent neurons. Mechanical hyperalgesia was evaluated by electronic von Frey test. Cannabinoid effect was evaluated using anandamide or ACEA, a non-selective or a selective CB1 receptor agonists, respectively; AM251, a CB1 receptor antagonist, and antisense ODN for CB1 receptor. Calcium imaging assay was performed to evaluated α,ß-meATP-responsive cultured DRG neurons pretreated with ACEA. Anandamide or ACEA administered in peripheral tissue reduced the carrageenan-induced mechanical hyperalgesia. The reduction in the carrageenan-induced hyperalgesia induced by ACEA was completely reversed by administration of AM251 as well as by the intrathecal treatment with antisense ODN for CB1 receptor. Also, ACEA reduced the mechanical hyperalgesia induced by bradykinin and by α,ß-meATP, a P2X3 receptor non-selective agonist, but not by tumor necrosis factor alpha (TNF-α), interleukin-1 beta (IL-1ß) and chemokine-induced chemoattractant-1 (CINC-1). Finally, CB1 receptors are co-localized with P2X3 receptors in DRG small-diameter neurons and the treatment with ACEA reduced the number of α,ß-meATP-responsive cultured DRG neurons. Our data suggest that the analgesic effect of CB1 receptor activation is mediated by a negative modulation of the P2X3 receptor in the primary afferent neurons.


Assuntos
Hiperalgesia/metabolismo , Hiperalgesia/patologia , Neurônios Aferentes/efeitos dos fármacos , Neurônios Aferentes/metabolismo , Receptor CB1 de Canabinoide/metabolismo , Receptores Purinérgicos P2X3/metabolismo , Animais , Bradicinina/farmacologia , Carragenina/farmacologia , Tamanho Celular , Citocinas/metabolismo , Gânglios Espinais/patologia , Hiperalgesia/induzido quimicamente , Hiperalgesia/tratamento farmacológico , Masculino , Neurônios Aferentes/patologia , Oligodesoxirribonucleotídeos Antissenso/genética , Ratos , Ratos Wistar , Receptor CB1 de Canabinoide/genética
10.
Eur J Pharmacol ; 741: 124-31, 2014 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-25058903

RESUMO

Dipyrone (metamizole) is an analgesic pro-drug used to control moderate pain. It is metabolized in two major bioactive metabolites: 4-methylaminoantipyrine (4-MAA) and 4-aminoantipyrine (4-AA). The aim of this study was to investigate the participation of peripheral CB1 and CB2 cannabinoid receptors activation in the anti-hyperalgesic effect of dipyrone, 4-MAA or 4-AA. PGE2 (100ng/50µL/paw) was locally administered in the hindpaw of male Wistar rats, and the mechanical nociceptive threshold was quantified by electronic von Frey test, before and 3h after its injection. Dipyrone, 4-MAA or 4-AA was administered 30min before the von Frey test. The selective CB1 receptor antagonist AM251, CB2 receptor antagonist AM630, cGMP inhibitor ODQ or KATP channel blocker glibenclamide were administered 30min before dipyrone, 4-MAA or 4-AA. The antisense-ODN against CB1 receptor expression was intrathecally administered once a day during four consecutive days. PGE2-induced mechanical hyperalgesia was inhibited by dipyrone, 4-MAA, and 4-AA in a dose-response manner. AM251 or ODN anti-sense against neuronal CB1 receptor, but not AM630, reversed the anti-hyperalgesic effect mediated by 4-AA, but not by dipyrone or 4-MAA. On the other hand, the anti-hyperalgesic effect of dipyrone or 4-MAA was reversed by glibenclamide or ODQ. These results suggest that the activation of neuronal CB1, but not CB2 receptor, in peripheral tissue is involved in the anti-hyperalgesic effect of 4-aminoantipyrine. In addition, 4-methylaminoantipyrine mediates the anti-hyperalgesic effect by cGMP activation and KATP opening.


Assuntos
Analgésicos/administração & dosagem , Anti-Inflamatórios não Esteroides/administração & dosagem , Dipirona/administração & dosagem , Neurônios/metabolismo , Canais de Potássio/metabolismo , Receptor CB1 de Canabinoide/metabolismo , Analgésicos/metabolismo , Animais , Anti-Inflamatórios não Esteroides/metabolismo , Injeções Espinhais , Masculino , Neurônios/efeitos dos fármacos , Ratos , Ratos Wistar , Distribuição Tecidual/efeitos dos fármacos , Distribuição Tecidual/fisiologia , Resultado do Tratamento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA