Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Vis Exp ; (210)2024 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-39185890

RESUMO

Effective live-imaging techniques are crucial to assess neuronal morphology in order to measure neurite outgrowth in real time. The proper measurement of neurite outgrowth has been a long-standing challenge over the years in the neuroscience research field. This parameter serves as a cornerstone in numerous in vitro experimental setups, ranging from dissociated cultures and organotypic cultures to cell lines. By quantifying the neurite length, it is possible to determine if a specific treatment worked or if axonal regeneration is enhanced in different experimental groups. In this study, the aim is to demonstrate the robustness and accuracy of the Incucyte Neurotrack neurite outgrowth analysis software. This semi-automatic software is available in a time-lapse microscopy system which offers several advantages over commonly used methodologies in the quantification of the neurite length in phase contrast images. The algorithm masks and quantifies several parameters in each image and returns neuronal cell metrics, including neurite length, branch points, cell-body clusters, and cell-body cluster areas. Firstly, we validated the robustness and accuracy of the software by correlating its values with those of the manual NeuronJ, a Fiji plug-in. Secondly, we used the algorithm which is able to work both on phase contrast images as well as on immunocytochemistry images. Using specific neuronal markers, we validated the feasibility of the fluorescence-based neurite outgrowth analysis on sensory neurons in vitro cultures. Additionally, this software can measure neurite length across various seeding conditions, ranging from individual cells to complex neuronal nets. In conclusion, the software provides an innovative and time-effective platform for neurite outgrowth assays, paving the way for faster and more reliable quantifications.


Assuntos
Crescimento Neuronal , Software , Animais , Crescimento Neuronal/fisiologia , Neuritos , Algoritmos , Camundongos , Processamento de Imagem Assistida por Computador/métodos , Ratos
2.
Front Neuroanat ; 18: 1398400, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39045347

RESUMO

Peripheral nerve damage often leads to the onset of neuropathic pain (NeuP). This condition afflicts millions of people, significantly burdening healthcare systems and putting strain on families' financial well-being. Here, we will focus on the role of peripheral sensory neurons, specifically the Dorsal Root Ganglia neurons (DRG neurons) in the development of NeuP. After axotomy, DRG neurons activate regenerative signals of axons-soma communication to promote a gene program that activates an axonal branching and elongation processes. The results of a neuronal morphological cytoskeleton change are not always associated with functional recovery. Moreover, any axonal miss-targeting may contribute to NeuP development. In this review, we will explore the epidemiology of NeuP and its molecular causes at the level of the peripheral nervous system and the target organs, with major focus on the neuronal cross-talk between intrinsic and extrinsic factors. Specifically, we will describe how failures in the neuronal regenerative program can exacerbate NeuP.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA