Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Chem Asian J ; 19(5): e202301082, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38155528

RESUMO

The intricate nature of the surface structure of carbon dots (CDs) hinders a comprehensive understanding of their emission behavior. In this study, we employ two types of CDs created through acid-alkali treatments, one with surface protonation and the other with surface deprotonation, with the objective of investigating the impact of these surface modifications on carrier behavior using ultrafast spectroscopy techniques. TEM, XRD, FTIR and Raman spectra demonstrate the CDs' structure, featuring graphitic core and abundant surface functional groups. XPS confirms the successful surface modifications of CDs via protonation and deprotonation. Ultrafast transient absorption (TA) spectroscopy reveals that deprotonation modification may decelerate the relaxation process, thereby increasing the visible PL quantum yields (PLQY). Conversely, protonation may accelerate the relaxation process due to the induced low-energy absorption band, resulting in self-absorption and reduced PLQY. Furthermore, TA analysis of CDs in mixed solvents with different proportions of ethanol shows the beneficial effect of ethanol in decelerating the relaxation process, leading to an increased PLQY of 33.7 % for deprotonated CDs and 22.1 % for protonated CDs. This study illuminates the intricate relationship between surface deprotonation/protonation modifications and carrier behavior in CDs, offering a potential avenue for the design of high-brightness CDs for diverse applications.

2.
ACS Appl Mater Interfaces ; 15(27): 32525-32537, 2023 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-37377206

RESUMO

Interlayer electric fields in two-dimensional (2D) materials create photoelectron protecting barriers useful to mitigate electron-hole recombination. However, tuning the interlayer electric field remains challenging. Here, carbon-doped Bi3O4Cl (C:Bi3O4Cl) nanosheets are synthesized using a gas phase protocol, and n-type carriers are acquired as confirmed by the transconductance polarity of nanosheet field effect transistors. Thin C:Bi3O4Cl nanosheets show excellent 266 nm photodetector figures of merit, and an avalanche-like photocurrent is demonstrated. Decaying behaviors of photoelectrons pumped by a 266 nm laser pulse (266 nm photoelectrons) are observed using transient absorption spectroscopy, and a significant 266 nm photoelectron lifetime quality in C:Bi3O4Cl is presented. Built C:Bi3O4Cl models suggest that the interlayer electric field can be boosted by two different carbon substitutions at the inner and outer bismuth sites. This work reports a facile approach to increase the interlayer electric field in Bi3O4Cl for future UV-C photodetector applications.

3.
Nanomaterials (Basel) ; 14(1)2023 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-38202489

RESUMO

The presence of surface trap states (STSs) is one of the key factors to affect the electronic and optical properties of quantum dots (QDs), however, the exact mechanism of how STSs influence QDs remains unclear. Herein, we demonstrated the impact of STSs on electron transfer in CdSe QDs and triplet-triplet energy transfer (TTET) from CdSe to surface acceptor using femtosecond transient absorption spectroscopy. Three types of colloidal CdSe QDs, each containing various degrees of STSs as evidenced by photoluminescence and X-ray photoelectron spectroscopy, were employed. Time-resolved emission and transient absorption spectra revealed that STSs can suppress band-edge emission effectively, resulting in a remarkable decrease in the lifetime of photoelectrons in QDs from 17.1 ns to 4.9 ns. Moreover, the investigation of TTET process revealed that STSs can suppress the generation of triplet exciton and effectively inhibit band-edge emission, leading to a significant decrease in TTET from CdSe QDs to the surface acceptor. This work presented evidence for STSs influence in shaping the optoelectronic properties of QDs, making it a valuable point of reference for understanding and manipulating STSs in diverse QDs-based optoelectronic applications involving electron and energy transfer.

4.
ACS Appl Mater Interfaces ; 14(12): 14783-14790, 2022 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-35290029

RESUMO

PbS colloidal quantum dots (CQDs) are emerging as promising candidates for next-generation, low-cost, and high-performance infrared photodetectors. Recently, photomultiplication has been explored to improve the detectivity of CQD infrared photodetectors by doping charge-trapping material into a matrix. However, this relies on remote doping that could influence carrier transfer giving rise to limited photomultiplication. Herein, a charge-self-trapped ZnO layer is prepared by a surface reaction between acid and ZnO. Photogenerated electrons trapped by oxygen vacancy defects at the ZnO surface generate a strong interfacial electrical field and induce large photomultiplication at extremely low bias. A PbS CQD infrared photodiode based on this structure shows a response (R) of 77.0 A·W-1 and specific detectivity of 1.5 × 1011 Jones at 1550 nm under a -0.3 V bias. This self-trapped ZnO layer can be applied to other photodetectors such as perovskite-based devices.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA