Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Entropy (Basel) ; 26(9)2024 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-39330063

RESUMO

Multivariate entropy algorithms have proven effective in the complexity dynamic analysis of electroencephalography (EEG) signals, with researchers commonly configuring the variables as multi-channel time series. However, the complex quantification of brain dynamics from a multi-frequency perspective has not been extensively explored, despite existing evidence suggesting interactions among brain rhythms at different frequencies. In this study, we proposed a novel algorithm, termed multi-frequency entropy (mFreEn), enhancing the capabilities of existing multivariate entropy algorithms and facilitating the complexity study of interactions among brain rhythms of different frequency bands. Firstly, utilizing simulated data, we evaluated the mFreEn's sensitivity to various noise signals, frequencies, and amplitudes, investigated the effects of parameters such as the embedding dimension and data length, and analyzed its anti-noise performance. The results indicated that mFreEn demonstrated enhanced sensitivity and reduced parameter dependence compared to traditional multivariate entropy algorithms. Subsequently, the mFreEn algorithm was applied to the analysis of real EEG data. We found that mFreEn exhibited a good diagnostic performance in analyzing resting-state EEG data from various brain disorders. Furthermore, mFreEn showed a good classification performance for EEG activity induced by diverse task stimuli. Consequently, mFreEn provides another important perspective to quantify complex dynamics.

2.
Artigo em Chinês | MEDLINE | ID: mdl-39193745

RESUMO

Objective:To explore the safety and aesthetic effect of modified Z-shaped cosmetic incision in parotid benign tumor resection. Methods:A prospective study was conducted. A total of 44 patients with benign parotid tumor resection were randomly divided into experimental group(n=22) and control group(n=22). The experimental group underwent modified Z-shaped cosmetic incision, while the control group underwent the traditional S-shaped incision. The surgical duration, hospital stay, complications and maxillofacial aesthetics were compared between the two groups. Results:There was no significant difference in gender, age, surgical method, pathological type between the experimental group and the control group(P>0.05). The maxillofacial aesthetics and surgical duration of the two groups was statistically significant(P<0.05), while there was no statistically significant difference in terms of hospitalization days, surgical complications and Vancouver scar scale score (P>0.05). Conclusion:The modified Z-shaped cosmetic incision has a better effect on improving the maxillofacial aesthetics after benign parotid tumor resection, and compared with the traditional S-shaped incision, the safety is consistent, so it is worthy of clinical promotion and application.


Assuntos
Neoplasias Parotídeas , Humanos , Neoplasias Parotídeas/cirurgia , Estudos Prospectivos , Feminino , Masculino , Glândula Parótida/cirurgia , Estética , Pessoa de Meia-Idade , Cicatriz/prevenção & controle , Complicações Pós-Operatórias , Adulto , Ferida Cirúrgica , Procedimentos de Cirurgia Plástica/métodos , Tempo de Internação
3.
Artigo em Inglês | MEDLINE | ID: mdl-38598403

RESUMO

Steady-state visual evoked potential (SSVEP), one of the most popular electroencephalography (EEG)-based brain-computer interface (BCI) paradigms, can achieve high performance using calibration-based recognition algorithms. As calibration-based recognition algorithms are time-consuming to collect calibration data, the least-squares transformation (LST) has been used to reduce the calibration effort for SSVEP-based BCI. However, the transformation matrices constructed by current LST methods are not precise enough, resulting in large differences between the transformed data and the real data of the target subject. This ultimately leads to the constructed spatial filters and reference templates not being effective enough. To address these issues, this paper proposes multi-stimulus LST with online adaptation scheme (ms-LST-OA). METHODS: The proposed ms-LST-OA consists of two parts. Firstly, to improve the precision of the transformation matrices, we propose the multi-stimulus LST (ms-LST) using cross-stimulus learning scheme as the cross-subject data transformation method. The ms-LST uses the data from neighboring stimuli to construct a higher precision transformation matrix for each stimulus to reduce the differences between transformed data and real data. Secondly, to further optimize the constructed spatial filters and reference templates, we use an online adaptation scheme to learn more features of the EEG signals of the target subject through an iterative process trial-by-trial. RESULTS: ms-LST-OA performance was measured for three datasets (Benchmark Dataset, BETA Dataset, and UCSD Dataset). Using few calibration data, the ITR of ms-LST-OA achieved 210.01±10.10 bits/min, 172.31±7.26 bits/min, and 139.04±14.90 bits/min for all three datasets, respectively. CONCLUSION: Using ms-LST-OA can reduce calibration effort for SSVEP-based BCIs.


Assuntos
Interfaces Cérebro-Computador , Potenciais Evocados Visuais , Humanos , Calibragem , Estimulação Luminosa/métodos , Eletroencefalografia/métodos , Algoritmos
4.
Brief Bioinform ; 24(3)2023 05 19.
Artigo em Inglês | MEDLINE | ID: mdl-36932655

RESUMO

Determining drug-drug interactions (DDIs) is an important part of pharmacovigilance and has a vital impact on public health. Compared with drug trials, obtaining DDI information from scientific articles is a faster and lower cost but still a highly credible approach. However, current DDI text extraction methods consider the instances generated from articles to be independent and ignore the potential connections between different instances in the same article or sentence. Effective use of external text data could improve prediction accuracy, but existing methods cannot extract key information from external data accurately and reasonably, resulting in low utilization of external data. In this study, we propose a DDI extraction framework, instance position embedding and key external text for DDI (IK-DDI), which adopts instance position embedding and key external text to extract DDI information. The proposed framework integrates the article-level and sentence-level position information of the instances into the model to strengthen the connections between instances generated from the same article or sentence. Moreover, we introduce a comprehensive similarity-matching method that uses string and word sense similarity to improve the matching accuracy between the target drug and external text. Furthermore, the key sentence search method is used to obtain key information from external data. Therefore, IK-DDI can make full use of the connection between instances and the information contained in external text data to improve the efficiency of DDI extraction. Experimental results show that IK-DDI outperforms existing methods on both macro-averaged and micro-averaged metrics, which suggests our method provides complete framework that can be used to extract relationships between biomedical entities and process external text data.


Assuntos
Mineração de Dados , Farmacovigilância , Mineração de Dados/métodos , Interações Medicamentosas , Benchmarking , Sistemas de Liberação de Medicamentos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA