Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Opt Express ; 32(7): 11992-12003, 2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38571034

RESUMO

Detectors based on single-photon avalanche diodes (SPADs) operating in free-running mode surfer from distorted detection signals due to the impact of afterpulse, dead time, and the non-linear detection efficiency response. This study presents a correction method based on conditional probability. In the experiments with high temporal resolution and huge dynamic range conditions, this method's residual sum of squares is near 68 times smaller than the uncorrected received data of SPAD and near 50 times smaller than deconvolution method. This method is applied to polarization lidar and CO2 lidar, and the performance shows significant improvement. This method effectively mitigates the impact of SPAD afterpulse, dead time, and detection efficiency non-linear response, making it suitable for all SPADs. Especially, our method is primarily employed for atmospheric detection.

2.
Opt Express ; 31(2): 2768-2779, 2023 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-36785283

RESUMO

Stratospheric aerosols play an important role in the atmospheric chemical and radiative balance. To detect the stratospheric aerosol layer, a 1064 nm lidar with high resolution and large dynamic range is developed using a superconducting nanowire single-photon detector (SNSPD). Measurements are typically performed at 1064 nm for its sensitivity to aerosol, whereas detectors are limited by low efficiency and high dark count rate (DCR). SNSPDs are characterized by high efficiency in the infrared wavelength domain, as well as low noise and dead time, which can significantly enhance the signal quality. However, it is still challenging to build an SNSPD with both large active area and high count rate. To improve the maximal count rate (MCR) so as to avoid saturation in the near range, a 16-pixel interleaved SNSPD array and a multichannel data acquisition system are developed. As a reference, a synchronous system working at 532 nm is applied. In a continuous comparison experiment, backscatter ratio profiles are retrieved with resolutions of 90 m/3 min, and the 1064 nm system shows better performance, which is sensitive to aerosols and immune to the contamination of the ozone absorption and density of molecule change in the lower stratosphere.

3.
Opt Lett ; 47(13): 3179-3182, 2022 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-35776579

RESUMO

Hyperfine wind structure detection is important for aerodynamic and aviation safety. Pulse coherent Doppler wind LIDAR (PCDWL) is a widespread wind remote sensing method with tunable spatial and temporal resolutions. However, meter scale and sub-second resolution are still challenging for PCDWL. This is because of the constraints among short laser pulse duration, spectral broadening, detection accuracy, and real-time processing. In this Letter, to further improve the spatial and temporal resolution of PCDWL, we optimize the optical design of a nanosecond fiber laser and telescope and adopt a new, to the best of our knowledge, algorithm called the even-order derivative peak sharpening technique. During the experiment, all-fiber PCDWL with spatial and temporal resolutions of 3 m and 0.1 s, respectively, is demonstrated. Two-day continuous observation of the wakes of the Chinese high-speed train shows detailed hyperfine wind structures. This is similar to a computational fluid dynamics simulation.

4.
Light Sci Appl ; 10(1): 212, 2021 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-34642297

RESUMO

Spectroscopy is a well-established nonintrusive tool that has played an important role in identifying and quantifying substances, from quantum descriptions to chemical and biomedical diagnostics. Challenges exist in accurate spectrum analysis in free space, which hinders us from understanding the composition of multiple gases and the chemical processes in the atmosphere. A photon-counting distributed free-space spectroscopy is proposed and demonstrated using lidar technique, incorporating a comb-referenced frequency-scanning laser and a superconducting nanowire single-photon detector. It is suitable for remote spectrum analysis with a range resolution over a wide band. As an example, a continuous field experiment is carried out over 72 h to obtain the spectra of carbon dioxide (CO2) and semi-heavy water (HDO, isotopic water vapor) in 6 km, with a range resolution of 60 m and a time resolution of 10 min. Compared to the methods that obtain only column-integrated spectra over kilometer-scale, the range resolution is improved by 2-3 orders of magnitude in this work. The CO2 and HDO concentrations are retrieved from the spectra acquired with uncertainties as low as ±1.2% and ±14.3%, respectively. This method holds much promise for increasing knowledge of atmospheric environment and chemistry researches, especially in terms of the evolution of complex molecular spectra in open areas.

5.
Proc Natl Acad Sci U S A ; 118(10)2021 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-33658383

RESUMO

Non-line-of-sight (NLOS) imaging has the ability to reconstruct hidden objects from indirect light paths that scatter multiple times in the surrounding environment, which is of considerable interest in a wide range of applications. Whereas conventional imaging involves direct line-of-sight light transport to recover the visible objects, NLOS imaging aims to reconstruct the hidden objects from the indirect light paths that scatter multiple times, typically using the information encoded in the time-of-flight of scattered photons. Despite recent advances, NLOS imaging has remained at short-range realizations, limited by the heavy loss and the spatial mixing due to the multiple diffuse reflections. Here, both experimental and conceptual innovations yield hardware and software solutions to increase the standoff distance of NLOS imaging from meter to kilometer range, which is about three orders of magnitude longer than previous experiments. In hardware, we develop a high-efficiency, low-noise NLOS imaging system at near-infrared wavelength based on a dual-telescope confocal optical design. In software, we adopt a convex optimizer, equipped with a tailored spatial-temporal kernel expressed using three-dimensional matrix, to mitigate the effect of the spatial-temporal broadening over long standoffs. Together, these enable our demonstration of NLOS imaging and real-time tracking of hidden objects over a distance of 1.43 km. The results will open venues for the development of NLOS imaging techniques and relevant applications to real-world conditions.

6.
Opt Express ; 29(2): 1932-1944, 2021 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-33726397

RESUMO

The sodium fluorescence lidar utilizes a 589 nm narrowband pulse laser system to measure mesopause region atomic sodium density, atmospheric temperature, and wind. However, this system is complicated and unstable. The continuous-wave (CW) sodium laser system can achieve ultra-narrow bandwidth, all-solid-state, and small compact size, as such it is extremely valuable for mobile, aircraft, and space-borne applications. In this study, we developed the first pseudo-random modulated CW (PMCW) sodium lidar by using an electro-optic modulated narrowband 589 nm CW laser with an output power of ∼1.2W. A pseudorandom M-sequence-code with a length of 127 is used to achieve altitude information by modulating laser and then decoding photon signals. Also, a biaxial structure with 9 m separation between the optical axes of the transmitter and receiver is designed to suppress the strong near-ground signals, which are crucial for improving the signal-to-noise ratio (SNR) of the PMCW lidar system. Nighttime measurements on December 2-4, 2019 show that the SNR at sodium layer peak is more than 10, corresponding to a statistical uncertainty of less than 10% in sodium density with temporal and spatial resolutions of 5 min and 1.05 km respectively. The comparison of vertical profiles of sodium density simultaneously observed by PMCW lidar and collocated pulse lidar shows good agreement.

7.
Opt Express ; 28(20): 29662-29675, 2020 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-33114860

RESUMO

Accurate power spectrum analysis of weak backscattered signals are the primary constraint in long-distance coherent Doppler wind lidar (CDWL) applications. To study the atmospheric boundary layer, an all-fiber CDWL with 300µJ pulse energy is developed. In principle, the coherent detection method can approach the quantum limit sensitivity if the noise in the photodetector output is dominated by the shot noise of the local oscillator. In practice, however, abnormal power spectra occur randomly, resulting in error estimation and low inversion probability. This phenomenon is theoretically analyzed and shown to be due to the leakage of a time-varying DC noise of the balanced detector. Thus, a correction algorithm with accurate noise modeling is proposed and demonstrated. The accuracy of radial velocity, carrier-to-noise ratio (CNR), and spectral width are improved. In wind profiling process, a robust sine-wave fitting algorithm with data quality control is adopted in the velocity-azimuth display (VAD) scanning detection. Finally, in 5-day continuous wind detection, the inversion probability is tremendously enhanced. As an example, it is increased from 8.6% to 52.1% at the height of 4 km.

8.
R Soc Open Sci ; 7(7): 200320, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32874629

RESUMO

The ionospheric sporadic E (Es) layer has a significant impact on the global positioning system (GPS)/global navigation satellite system (GNSS) signals. These influences on the GPS/GNSS signals can also be used to study the occurrence and characteristics of the Es layer on a global scale. In this paper, 5.8 million radio occultation (RO) profiles from the FORMOSAT-3/COSMIC satellite mission and ground-based observations of Es layers recorded by 25 ionospheric monitoring stations and held at the UK Solar System Data Centre at the Rutherford Appleton Laboratory and the Chinese Meridian Project were used to derive the hourly Es critical frequency (f o Es) data. The global distribution of f o Es with a high spatial resolution shows a strong seasonal variation in f o Es with a summer maximum exceeding 4.0 MHz and a winter minimum between 2.0 and 2.5 MHz. The GPS/GNSS RO technique is an important tool that can provide global estimates of Es layers, augmenting the limited coverage and low-frequency detection threshold of ground-based instruments. Attention should be paid to small f o Es values from ionosondes near the instrumental detection limits corresponding to minimum frequencies in the range 1.28-1.60 MHz.

9.
Sci Rep ; 9(1): 17907, 2019 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-31784684

RESUMO

We present a multi-instrument experiment to study the effects of tropospheric thunderstorms on the mesopause region and the lower ionosphere. Sodium (Na) lidar and ionospheric observations by two digital ionospheric sounders are used to study the variation in the neutral metal atoms and metallic ions above thunderstorms. An enhanced ionospheric sporadic E layer with a downward tidal phase is observed followed by a subsequent intensification of neutral Na number density with an increase of 600 cm-3 in the mesosphere. In addition, the Na neutral chemistry and ion-molecule chemistry are considered in a Na chemistry model to simulate the dynamical and chemical coupling processes in the mesosphere and ionosphere above thunderstorms. The enhanced Na layer in the simulation obtained by using the ionospheric observation as input is in agreement with the Na lidar observation. We find that the intensification of metallic layered phenomena above thunderstorms is associated with the atmospheric tides, as a result of the troposphere-mesosphere-ionosphere coupling.

10.
Opt Express ; 27(22): 31235-31245, 2019 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-31684359

RESUMO

Doppler wind lidar is an effective tool for wind detection with high temporal and spatial resolution. However, precise wind profile measurement under rainy conditions is a challenge, due to the interfering signals from raindrop reflections. In this work, a compact all-fiber coherent Doppler lidar (CDL) at working wavelength of 1.5 µm is applied for simultaneous wind and precipitation detection. The performance of the lidar is validated by comparison with the weather balloons. Thanks to the ability of precise spectrum measurement, both aerosol and rainfall signals can be detected by the CDL under rainy conditions. The spectrum width is used to identify the precipitation events, during which the two-peak Doppler spectrum is observed. The spectrum is fitted by a two-component Gaussian model and two velocities are obtained. By using the velocity-azimuth display (VAD) scanning technique, wind speed and rainfall speed are simultaneously retrieved. The false detection probability of wind speed in the rainy conditions is thus reduced.

11.
Opt Lett ; 44(2): 311-314, 2019 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-30644888

RESUMO

Generally, the pulse duration of a coherent Doppler wind lidar (CDWL) is shortened to minimize the spatial resolution at the sacrifice of carrier-to-noise ratio, since the peak power of a laser source is limited by the stimulated Brillouin scattering or other nonlinear optical phenomena. To solve this problem, an all-fiber CDWL incorporating Golay coding is proposed and demonstrated. Given the peak power of the laser pulse, the Golay coding method can improve the measuring precision by improving the pulse repetition frequency of the outgoing laser. In the experiment, the Golay coding implementation is optimized by normalizing the intensity of every single pulse of the outgoing laser with a closed-loop feedback, achieving a spatial resolution of 6 m and a temporal resolution of 2 s with a maximum detection range of 552 m. The wind profile in line of sight and the result derived from another noncoding CDWL show good agreement.

12.
Rev Sci Instrum ; 89(10): 103106, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30399898

RESUMO

We present a compact and lightweight 1.5 µm lidar using a free-running single-photon detector (SPD) based on a multi-mode fiber (MMF) coupling InGaAs/InP negative feedback avalanche diode. The ultimate light detection sensitivity of SPD highly reduces the power requirement of the laser, whilst the enhanced collection efficiency due to MMF coupling significantly reduces the volume and weight of telescopes. We develop a specific algorithm for the corrections of errors caused by the SPD and erbium-doped fiber amplifier to extract accurate backscattering signals. We also perform a comparison between single-mode fiber (SMF) coupling and MMF coupling in the lidar receiver, and the results show that the collection efficiency with MMF coupling is five times higher than that with SMF coupling. In order to validate the functionality, we use the lidar system for the application of cloud detection. The lidar system exhibits the ability to detect both the cloud base height and the thickness of multi-layer clouds to an altitude of 12 km with a temporal resolution of 1 s and a spatial resolution of 15 m. Due to the advantages of compactness and lightweight, our lidar system can be installed on unmanned aerial vehicles for wide applications in practice.

13.
Opt Lett ; 42(21): 4454-4457, 2017 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-29088186

RESUMO

An all-fiber, eye-safe and micro-pulse polarization lidar is demonstrated with a polarization-maintaining structure, incorporating a single superconducting nanowire single-photon detector (SNSPD) at 1.5 µm. The time-division multiplexing technique is used to achieve a calibration-free optical layout. A single piece of detector is used to detect the backscatter signals at two orthogonal states in an alternative sequence. Thus, regular calibration of the two detectors in traditional polarization lidars is avoided. The signal-to-noise ratio of the lidar is guaranteed by using an SNSPD, providing high detection efficiency and low dark count noise. The linear depolarization ratio (LDR) of the urban aerosol is observed horizontally over 48 h in Hefei [N31°50'37'', E117°15'54''], when a heavy air pollution is spreading from the north to the central east of China. Phenomena of LDR bursts are detected at a location where a building is under construction. The lidar results show good agreement with the data detected from a sun photometer, a 532 nm visibility lidar, and the weather forecast information.

14.
Opt Lett ; 42(18): 3541-3544, 2017 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-28914897

RESUMO

A dual-frequency direct detection Doppler lidar is demonstrated using a superconducting nanowire single-photon detector (SNSPD) at 1.5 µm. The so-called double-edge technique is implemented by using a dual-frequency laser pulse, rather than using a double-channel Fabry-Perot interferometer. Such a modification to the reported lidars enhances the frequency stability in the system level. Using the time-division multiplexing method, only one piece of SNSPD is used in the optical receiver, making the system simplified and robust. The SNSPD is adopted to enhance the temporal resolution since it offers merits of high quantum efficiency, low dark count noise, no after-pulsing probability, and a high maximum count rate. Two telescopes that point westward and northward at a zenith angle of 30° are used to detect the line-of-sight wind components, which are used to synthesize the horizontal wind profile. Horizontal wind profiles up to an altitude of about 2.7 km are calculated with vertical spatial/temporal resolution of 10 m/10 s. Wind dynamic evolution and vertical wind shears are observed clearly.

15.
Opt Express ; 25(13): 14611-14620, 2017 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-28789045

RESUMO

We present a fully integrated InGaAs/InP negative feedback avalanche diode (NFAD) based free-running single-photon detector (SPD) designed for accurate lidar applications. A free-piston Stirling cooler is used to cool down the NFAD with a large temperature range, and an active hold-off circuit implemented in a field programmable gate array is applied to further suppress the afterpulsing contribution. The key parameters of the free-running SPD including photon detection efficiency (PDE), dark count rate (DCR), afterpulse probability, and maximum count rate (MCR) are dedicatedly optimized for lidar application in practice. We then perform a field experiment using a Mie lidar system with 20 kHz pulse repetition frequency to compare the performance between the free-running InGaAs/InP SPD and a commercial superconducting nanowire single-photon detector (SNSPD). Our detector exhibits good performance with 1.6 Mcps MCR (0.6 µs hold-off time), 10% PDE, 950 cps DCR, and 18% afterpulse probability over 50 µs period. Such performance is worse than the SNSPD with 60% PDE and 300 cps DCR. However, after performing a specific algorithm that we have developed for afterpulse and count rate corrections, the lidar system performance in terms of range-corrected signal (Pr2) distribution using our SPD agrees very well with the result using the SNSPD, with only a relative error of ∼2%. Due to the advantages of low-cost and small size of InGaAs/InP NFADs, such detector provides a practical solution for accurate lidar applications.

16.
Opt Lett ; 41(22): 5218-5221, 2016 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-27842097

RESUMO

For the first time, to the best of our knowledge, a compact, eye-safe, and versatile direct detection Doppler lidar is developed using an upconversion single-photon detection method at 1.5 µm. An all-fiber and polarization maintaining architecture is realized to guarantee the high optical coupling efficiency and the robust stability. Using integrated-optic components, the conservation of etendue of the optical receiver is achieved by manufacturing a fiber-coupled periodically poled lithium niobate waveguide and an all-fiber Fabry-Perot interferometer (FPI). The double-edge technique is implemented by using a convert single-channel FPI and a single upconversion detector, incorporating a time-division multiplexing method. The backscatter photons at 1548.1 nm are converted into 863 nm via mixing with a pump laser at 1950 nm. The relative error of the system is less than 0.1% over nine weeks. In experiments, atmospheric wind and visibility over 48 h are detected in the boundary layer. The lidar shows good agreement with the ultrasonic wind sensor, with a standard deviation of 1.04 m/s in speed and 12.3° in direction.

17.
Opt Express ; 24(17): 19322-36, 2016 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-27557211

RESUMO

An all-fiber, micro-pulse and eye-safe high spectral resolution wind lidar (HSRWL) at 1.5 µm is proposed and demonstrated by using a pair of upconversion single-photon detectors and a fiber Fabry-Perot scanning interferometer (FFP-SI). In order to improve the optical detection efficiency, both the transmission spectrum and the reflection spectrum of the FFP-SI are used for spectral analyses of the aerosol backscatter and the reference laser pulse. Taking advantages of high signal-to-noise ratio of the detectors and high spectral resolution of the FFP-SI, the center frequencies and the bandwidths of spectra of the aerosol backscatter are obtained simultaneously. Continuous LOS wind observations are carried out on two days at Hefei (31.843 °N, 117.265 °E), China. The horizontal detection range of 4 km is realized with temporal resolution of 1 minute. The spatial resolution is switched from 30 m to 60 m at distance of 1.8 km. In a comparison experiment, LOS wind measurements from the HSRWL show good agreement with the results from an ultrasonic wind sensor (Vaisala windcap WMT52). An empirical method is adopted to evaluate the precision of the measurements. The standard deviation of the wind speed is 0.76 m/s at 1.8 km. The standard deviation of bandwidth variation is 2.07 MHz at 1.8 km.

18.
Opt Express ; 24(6): A581-91, 2016 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-27136878

RESUMO

Simultaneous wind and temperature measurements in stratosphere with high time-spatial resolution for gravity waves study are scarce. In this paper we perform wind field gravity waves cases in the stratosphere observed by a mobile Rayleigh Doppler lidar. This lidar system with both wind and temperature measurements were implemented for atmosphere gravity waves research in the altitude region 15-60 km. Observations were carried out for two periods of time: 3 months started from November 4, 2014 in Xinzhou, China (38.425°N,112.729°E) and 2 months started from October 7, 2015 in Jiuquan, China (39.741°N, 98.495°E) . The mesoscale fluctuations of the horizontal wind velocity and the two dimensional spectra analysis of these fluctuations show the presence of dominant oscillatory modes with wavelength of 4-14 km and period of around 10 hours in several cases. The simultaneous temperature observations make it possible to identify gravity wave cases from the relationships between different variables: temperature and horizontal wind. The observed cases demonstrate the Rayleigh Doppler Lidar's capacity to study gravity waves.

19.
Opt Lett ; 40(7): 1579-82, 2015 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-25831389

RESUMO

A micro-pulse lidar at eye-safe wavelength is constructed based on an upconversion single-photon detector. The ultralow-noise detector enables using integration technique to improve the signal-to-noise ratio of the atmospheric backscattering even at daytime. With pulse energy of 110 µJ, pulse repetition rate of 15 kHz, optical antenna diameter of 100 mm and integration time of 5 min, a horizontal detection range of 7 km is realized. In the demonstration experiment, atmospheric visibility over 24 h is monitored continuously, with results in accordance with the weather forecasts.

20.
Opt Express ; 22(18): 21775-89, 2014 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-25321553

RESUMO

Temperature detection remains challenging in the low stratosphere, where the Rayleigh integration lidar is perturbed by aerosol contamination and ozone absorption while the rotational Raman lidar is suffered from its low scattering cross section. To correct the impacts of temperature on the Rayleigh Doppler lidar, a high spectral resolution lidar (HSRL) based on cavity scanning Fabry-Perot Interferometer (FPI) is developed. By considering the effect of the laser spectral width, Doppler broadening of the molecular backscatter, divergence of the light beam and mirror defects of the FPI, a well-behaved transmission function is proved to show the principle of HSRL in detail. Analysis of the statistical error of the HSRL is carried out in the data processing. A temperature lidar using both HSRL and Rayleigh integration techniques is incorporated into the Rayleigh Doppler wind lidar. Simultaneous wind and temperature detection is carried out based on the combined system at Delhi (37.371°N, 97.374°E; 2850 m above the sea level) in Qinghai province, China. Lower Stratosphere temperature has been measured using HSRL between 18 and 50 km with temporal resolution of 2000 seconds. The statistical error of the derived temperatures is between 0.2 and 9.2 K. The temperature profile retrieved from the HSRL and wind profile from the Rayleigh Doppler lidar show good agreement with the radiosonde data. Specifically, the max temperature deviation between the HSRL and radiosonde is 4.7 K from 18 km to 36 km, and it is 2.7 K between the HSRL and Rayleigh integration lidar from 27 km to 34 km.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA