Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Sci Rep ; 11(1): 17000, 2021 08 20.
Artigo em Inglês | MEDLINE | ID: mdl-34417506

RESUMO

In recent years, considerable attention has been paid in time-frequency analysis (TFA) methods, which is an effective technology in processing the vibration signal of rotating machinery. However, TFA techniques are not sufficient to handle signals having a strong non-stationary characteristic. To overcome this drawback, taking short-time Fourier transform as a link, a TFA methods that using the generalized Warblet transform (GWT) in combination with the second order synchroextracting transform (SSET) is proposed in this study. Firstly, based on the GWT and SSET theories, this paper proposes a method combining the two TFA methods to improve the TFA concentration, named GWT-SSET. Secondly, the method is verified numerically with single-component and multi-component signals, respectively. Quantized indicators, Rényi entropy and mean relative error (MRE) are used to analyze the concentration of TFA and accuracy of instantly frequency (IF) estimation, respectively. Finally, the proposed method is applied to analyze nonstationary signals in variable speed. The numerical and experimental results illustrate the effectiveness of the GWT-SSET method.

2.
Sci Rep ; 11(1): 16709, 2021 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-34408223

RESUMO

The performance models are the critical step for condition monitoring and fault diagnosis of diesel engines, and are an important bridge to describe the link between input parameters and targets. Large-scale experimental methods with higher economic costs are often adopted to construct accurate performance models. To ensure the accuracy of the model and reduce the cost of the test, a novel method for modeling the performances of marine diesel engine is proposed based on deep neural network method coupled with virtual sample generation technology. Firstly, according to the practical experience, the four parameters including speed, power, lubricating oil temperature and pressure are selected as the input factors for establishing the performance models. Besides, brake specific fuel consumption, vibration and noise are adopted to assess the status of marine diesel engine. Secondly, small sample experiments for diesel engine are performed under multiple working conditions. Moreover, the experimental sample data are diffused for obtaining valid extended data based on virtual sample generation technology. Then, the performance models are established using the deep neural network method, in which the diffusion data set is adopted to reduce the cost of testing. Finally, the accuracy of the developed model is verified through experiment, and the parametric effects on performances are discussed. The results indicate that the overall prediction accuracy is more than 93%. Moreover, power is the key factor affecting brake specific fuel consumption with a weighting of 30% of the four input factors. While speed is the key factor affecting vibration and noise with a weighting of 30% and 30.5%, respectively.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA