Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Anim Sci ; 100(7)2022 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-35511607

RESUMO

Variation in nutrition is a key determinant of growth, body composition, and the ability of animals to perform to their genetic potential. Depending on the quality of feed available, animals may be able to overcome negative effects of prior nutritional restriction, increasing intake and rates of tissue gain, but full compensation may not occur. A 2 × 3 × 4 factorial serial slaughter study was conducted to examine the effects of prior nutritional restriction, dietary energy density, and supplemental rumen undegradable protein (RUP) on intake, growth, and body composition of lambs. After an initial slaughter (n = 8), 124 4-mo-old Merino cross wethers (28.4 ± 1.8 kg) were assigned to either restricted (LO, 500 g/d) or unrestricted (HI, 1500 g/d) intake of lucerne and oat pellets. After 8 wk, eight lambs/group were slaughtered and tissue weights and chemical composition were measured. Remaining lambs were randomly assigned to a factorial combination of dietary energy density (7.8, 9.2, and 10.7 MJ/kg DM) and supplemental RUP (0, 30, 60, and 90 g/d) and fed ad libitum for a 12- to 13-wk experimental period before slaughter and analysis. By week 3 of the experimental period, lambs fed the same level of energy had similar DMI (g/d) and MEI (MJ/d) (P > 0.05), regardless of prior level of nutrition. Restricted-refed (LO) lambs had higher rates of fat and protein gain than HI lambs (P < 0.05) but had similar visceral masses (P > 0.05). However, LO lambs were lighter and leaner at slaughter, with proportionally larger rumens and livers (P < 0.05). Tissue masses increased with increasing dietary energy density, as did DMI, energy and nitrogen (N) retention (% intake), and rates of protein and fat gain (P < 0.05). The liver increased proportionally with increasing dietary energy density and RUP (P < 0.05), but rumen size decreased relative to the empty body as dietary energy density increased (P < 0.05) and did not respond to RUP (P > 0.05). Fat deposition was greatest in lambs fed 60 g/d supplemental RUP (P < 0.05). However, lambs fed 90 g/d were as lean as lambs that did not receive supplement (P0, P > 0.05), with poorer nitrogen retention and proportionally heavier livers than P0 lambs (P < 0.05). In general, visceral protein was the first tissue to respond to increased intake during refeeding, followed by non-visceral protein and fat, highlighting the influence of differences in tissue response over time on animal performance and body composition.


Animal performance is determined by the combined effects of both prior and current nutrition. The present study used a 2 × 3 × 4 factorial to examine the effects of prior feeding level (HI or LO) on subsequent ad-libitum intake of diets varying in energy density (7.8, 9.2, 10.7 MJ/kg DM) and level of supplemental rumen undegradable protein (RUP; 0, 30, 60, and 90g/d). By week 3 of refeeding, LO and HI lambs had similar feed intake, but LO lambs had proportionally more gut and liver tissue and were lighter and leaner at final slaughter. As dietary energy density increased, the rumen became proportionally smaller while the liver became proportionally larger. Liver size increased with increasing RUP, and lambs fed 30 and 60 g/d were fatter than other lambs. However, lambs fed 90 g/d RUP had less fat than other lambs, as the increased energy requirements of a larger liver and of disposing of excess nitrogen appeared to outweigh any nutritional benefits. Understanding how prior nutrition affects current performance, as well as how tissues vary in their response to the same diet, is key to improving our understanding of animal performance and response to change.


Assuntos
Ração Animal , Rúmen , Ração Animal/análise , Fenômenos Fisiológicos da Nutrição Animal , Animais , Dieta/veterinária , Proteínas Alimentares/metabolismo , Masculino , Nitrogênio/metabolismo , Rúmen/metabolismo , Ovinos , Carneiro Doméstico
2.
J Anim Sci ; 97(2): 945-961, 2019 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-30452693

RESUMO

While the environmental impacts of livestock production, such as greenhouse gas emissions and water usage, have been studied for a variety of US livestock production systems, the environmental impact of US sheep production is still unknown. A cradle-to-farm gate life cycle assessment (LCA) was conducted according to international standards (ISO 14040/44), analyzing the impacts of CS representing five different meat sheep production systems in California, and focusing on carbon footprint (carbon dioxide equivalents, CO2e) and irrigated water usage (metric ton, MT). This study is the first to look specifically at the carbon footprint of the California sheep industry and consider both wool and meat production across the diverse sheep production systems within California. This study also explicitly examined the carbon footprint of hair sheep as compared with wooled sheep production. Data were derived from producer interviews and literature values, and California-specific emission factors were used wherever possible. Flock outputs studied included market lamb meat, breeding stock, 2-d-old lambs, cull adult meat, and wool. Four different methane prediction models were examined, including the current IPCC tier 1 and 2 equations, and an additional sensitivity analysis was conducted to examine the effect of a fixed vs. flexible coefficient of gain (kg) in mature ewes on carbon footprint per ewe. Mass, economic, and protein mass allocation were used to examine the impact of allocation method on carbon footprint and water usage, while sensitivity analyses were used to examine the impact of ewe replacement rate (% of ewe flock per year) and lamb crop (lambs born per ewe bred) on carbon footprint per kilogram market lamb. The carbon footprint of market lamb production ranged from 13.9 to 30.6 kg CO2e/kg market lamb production on a mass basis, 10.4 to 18.1 kg CO2e/kg market lamb on an economic basis, and 6.6 to 10.1 kg CO2e/kg market lamb on a protein mass basis. Enteric methane (CH4) production was the largest single source of emissions for all CS, averaging 72% of total emissions. Emissions from feed production averaged 22% in total, primarily from manure emissions credited to feed. Whole-ranch water usage ranged from 2.1 to 44.8 MT/kg market lamb, almost entirely from feed production. Overall results were in agreement with those from meat-focused sheep systems in the United Kingdom as well as beef raised under similar conditions in California.


Assuntos
Criação de Animais Domésticos , Pegada de Carbono , Conservação dos Recursos Naturais , Carne Vermelha/estatística & dados numéricos , Ovinos/fisiologia , Água/normas , Animais , Cruzamento , California , Carbono/metabolismo , Dióxido de Carbono/metabolismo , Feminino , Ovinos/crescimento & desenvolvimento ,
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA