Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Ecol Appl ; 29(8): e01997, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31483902

RESUMO

In an era characterized by recurrent large wildfires in many parts of the globe, there is a critical need to understand how animal species respond to fires, the rates at which populations can recover, and the functional changes fires may cause. Using quantified changes in habitat parameters over a ~400-yr post-fire chronosequence in an obligate-seeding Australian eucalypt woodland, we build and test predictions of how birds, as individual species and aggregated into functional groups according to their use of specific habitat resources, respond to time since fire. Individual bird species exhibited four generalized response types to time since fire: incline, decline, delayed, and bell. All significant relationships between bird functional group richness or abundance and time since fire were consistent with predictions based on known time-since-fire-associated changes in habitat features putatively important for these bird groups. Consequently, we argue that the bird community is responding to post-fire successional changes in habitat as per the habitat accommodation model, rather than to time since fire per se, and that our functional framework will be of value in predicting bird responses to future disturbances in this and other obligate-seeder forest and woodland ecosystems. Most bird species and functional groups that were affected by time since fire were associated with long-unburned woodlands. In the context of recent large, stand-replacement wildfires that have affected a substantial proportion of obligate-seeder eucalypt woodlands, and the multi-century timescales over which post-fire succession occurs, it would appear preferable from a bird conservation perspective if fires initiating loss of currently long-unburned woodlands were minimized. Once long-unburned woodlands are transformed by fire into recently burned woodlands, there is limited scope for alternative management interventions to accelerate the rate of habitat development after fire, or supplement the resources formerly provided to birds by long-unburned woodlands, with the limited exception of augmenting hollow availability for key hollow-nesting species.


Assuntos
Ecossistema , Incêndios , Animais , Austrália , Aves , Conservação dos Recursos Naturais , Florestas , Dinâmica Populacional
2.
J Exp Biol ; 220(Pt 7): 1341-1349, 2017 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-28356368

RESUMO

It is unclear whether torpor really is uncommon amongst passerine birds. We therefore examined body temperature and thermoregulatory strategies of an Austral passerine, the white-browed babbler (Pomatostomus superciliosus), which has characteristics related to a high probability of torpor use; it is a sedentary, insectivorous, cooperative breeding species, which we studied during winter in a temperate habitat. Wild, free-living babblers maintained normothermy overnight, even at sub-zero ambient temperatures, with a mean minimum body temperature of 38.5±0.04°C that was independent of minimum black bulb temperature. Physiological variables measured in the laboratory revealed that babblers had a low basal metabolic rate and evaporative water loss, but their body temperature and thermal conductance were typical of those of other birds and they had a typical endothermic response to low ambient temperature. Huddling yielded significant energy savings at low temperatures and a roost nest created a microclimate that buffered against low temperatures. Low basal energy requirements, communal roosting and the insulation of a roost nest confer sufficient energetic benefits, allowing babblers to meet energy requirements without resorting to heterothermia, even in their depauperate, low-productivity landscape, suggesting that passerine birds use alternatives to torpor to balance their energy budgets when possible.


Assuntos
Regulação da Temperatura Corporal , Passeriformes/fisiologia , Torpor , Animais , Metabolismo Basal , Temperatura Corporal , Estações do Ano
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA