Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
1.
Toxins (Basel) ; 16(4)2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38668592

RESUMO

Broiler chickens in livestock production face numerous challenges that can impact their health and welfare, including mycotoxin contamination and heat stress. In this study, we aimed to investigate the combined effects of two mycotoxins, deoxynivalenol (DON) and fumonisins (FBs), along with short-term heat stress conditions, on broiler gut health and endotoxin translocation. An experiment was conducted to assess the impacts of mycotoxin exposure on broilers, focusing on intestinal endotoxin activity, gene expression related to gut barrier function and inflammation, and the plasma concentration of the endotoxin marker 3-OH C14:0 either at thermoneutral conditions or short-term heat stress conditions. Independently of heat stress, broilers fed DON-contaminated diets exhibited reduced body weight gain during the starter phase (Day 1-12) compared to the control group, while broilers fed FB-contaminated diets experienced decreased body weight gain throughout the entire trial period (Day 1-24). Furthermore, under thermoneutral conditions, broilers fed DON-contaminated diets showed an increase in 3-OH C14:0 concentration in the plasma. Moreover, under heat stress conditions, the expression of genes related to gut barrier function (Claudin 5, Zonulin 1 and 2) and inflammation (Toll-like receptor 4, Interleukin-1 beta, Interleukin-6) was significantly affected by diets contaminated with mycotoxins, depending on the gut segment. This effect was particularly prominent in broilers fed diets contaminated with FBs. Notably, the plasma concentration of 3-OH C14:0 increased in broilers exposed to both DON- and FB-contaminated diets under heat stress conditions. These findings shed light on the intricate interactions between mycotoxins, heat stress, gut health, and endotoxin translocation in broiler chickens, highlighting the importance of understanding these interactions for the development of effective management strategies in livestock production to enhance broiler health and welfare.


Assuntos
Ração Animal , Galinhas , Endotoxinas , Contaminação de Alimentos , Fusarium , Tricotecenos , Animais , Galinhas/microbiologia , Endotoxinas/sangue , Tricotecenos/toxicidade , Fumonisinas/toxicidade , Masculino , Dieta/veterinária , Resposta ao Choque Térmico/efeitos dos fármacos , Micotoxinas/toxicidade
2.
J Agric Food Chem ; 71(36): 13462-13473, 2023 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-37655855

RESUMO

The current study evaluated the effects of feeding diets contaminated with aflatoxin B1 (AFB1), fumonisins (FBs), or both on the performance and health of broiler chickens and the safety of their food products as well as the efficacy of bentonite and fumonisin esterase to mitigate the effects of these mycotoxins under conditions representative for sub-Saharan Africa (SSA). Four hundred one-day-old Cobb 500 broiler chickens were randomly assigned to 20 treatments with either a control diet, a diet with moderate AFB1 (60 µg/kg feed) or high AFB1 (220 µg/kg feed), or FBs (17,430 µg FB1+FB2/kg feed), alone or in combination, a diet containing AFB1 (either 60 or 220 µg/kg) and/or FBs (17,430 µg FB1+FB2/kg) and bentonite or fumonisin esterase or both, or a diet with bentonite or fumonisin esterase only. The experimental diets were given to the birds from day 1 to day 35 of age, and the effects of the different treatments on production performance were assessed by feed intake (FI), body weight gain (BWG), and feed conversion ratio (FCR). Possible health effects were evaluated through blood biochemistry, organ weights, mortality, liver gross pathological changes, and vaccine response. Residues of aflatoxins (AFB1, B2, G1, G2, M1 and M2) were determined in plasma, muscle, and liver tissues using validated UHPLC-MS/MS methods. The results obtained indicated that broiler chickens fed high AFB1 alone had poor FCR when compared to a diet with both high AFB1 and FBs (p = 0.0063). Serum total protein and albumin from birds fed FBs only or in combination with moderate or high AFB1 or detoxifiers increased when compared to the control (p < 0.05). Liver gross pathological changes were more pronounced in birds fed contaminated diets when compared to birds fed the control or diets supplemented with mycotoxin detoxifiers. The relative weight of the heart was significantly higher in birds fed high AFB1 and FBs when compared to the control or high AFB1 only diets (p < 0.05), indicating interactions between the mycotoxins. Inclusion of bentonite in AFB1-contaminated diets offered a protective effect on the change in weights of the liver, heart and spleen (p < 0.05). Residues of AFB1 were detected above the limit of quantification (max: 0.12 ± 0.03 µg/kg) in liver samples only, from birds fed a diet with high AFB1 only or with FBs or the detoxifiers. Supplementing bentonite into these AFB1-contaminated diets reduced the levels of the liver AFB1 residues by up to 50%. Bentonite or fumonisin esterase, alone, did not affect the performance and health of broiler chickens. Thus, at the doses tested, both detoxifiers were safe and efficient for use as valid means of counteracting the negative effects of AFB1 and FBs as well as transfer of AFB1 to food products (liver) of broiler chickens.


Assuntos
Aflatoxinas , Fumonisinas , Micotoxinas , Animais , Aflatoxinas/toxicidade , Galinhas , Fumonisinas/toxicidade , Bentonita , Espectrometria de Massas em Tandem , Aflatoxina B1/toxicidade , Esterases
3.
Mycotoxin Res ; 39(3): 201-218, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37249806

RESUMO

Female pigs respond sensitive both to DON and ZEN with anorexia and endocrine disruption, respectively, when critical diet concentrations are exceeded. Therefore, the frequent co-contamination of feed by DON and ZEN requires their parallel inactivation. The additive ZenA hydrolyzes ZEN while SBS inactivates DON through sulfonation. Both supplements were simultaneously added (+, 2.5 g SBS and 100 U ZenA/kg) to a control diet (CON-, 0.04 mg DON and < 0.004 mg ZEN/kg; CON+, 0.03 mg DON and < 0.004 mg ZEN/kg) and a Fusarium toxin contaminated diet (FUS-, 2.57 mg DON and 0.24 mg ZEN/kg; FUS+, 2.04 mg DON and 0.24 mg ZEN/kg). The 4 diets were fed to 20 female weaned piglets each (6 kg initial body weight) for 35 days; the piglets were sacrificed thereafter for collecting samples. Supplements improved performance and modified metabolism and hematology independent of dietary DON contamination. The mechanisms behind these changes could not be clarified and require further consideration. SBS reduced DON concentration in feed by approximately 20% and to the same extent in blood plasma and urine suggesting that no further DON sulfonate formation occurred in the digestive tract before absorbing DON in the upper digestive tract or that additionally formed DON sulfonates escaped absorption. DON sulfonates were detected in feces suggesting that unabsorbed DON sulfonates reached feces and/or that unabsorbed DON was sulfonated in the hindgut. The observed reduction rate of 20% was evaluated to be insufficient for feeding practice. Galenic form of SBS added to dry feed needs to be improved to support the DON sulfonation in the proximal digestive tract.ZenA was active in the digestive tract as demonstrated by the presence of its hydrolyzed none-estrogenic reaction products hydrolyzed ZEN (HZEN) and decarboxylated and hydrolyzed ZEN (DHZEN) both in feces, systemic circulation, and urine of group FUS+ compared to group FUS-. The presence of these hydrolysis products was paralleled by a significant decrease in high-estrogenic ZEN concentrations which, in turn, was related to a decrease in relative weights of uteri and ovaries when compared to group FUS-. Thus, ZenA was proven to be effective; both in terms of biomarkers and biological effects.


Assuntos
Fusarium , Tricotecenos , Zearalenona , Animais , Feminino , Suínos , Zearalenona/análise , Hidrolases/metabolismo , Tricotecenos/análise , Ração Animal/análise , Contaminação de Alimentos , Fusarium/metabolismo
4.
Toxins (Basel) ; 15(3)2023 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-36977076

RESUMO

The study investigated the short-term effects of a single oral bolus of zearalenone (ZEN) on the rumen microbiota and fermentation patterns in four rumen-cannulated Holstein cows fed a forage diet with daily 2 kg/cow concentrate. During the baseline day, cows received uncontaminated concentrate, followed by ZEN-contaminated concentrate on the second day, and again the uncontaminated concentrate on day three. Free rumen liquid (FRL) and particle-associated rumen liquid (PARL) were collected at different hours post-feeding on all days to analyze the prokaryotic community composition, absolute abundances of bacteria, archaea, protozoa, and anaerobic fungi, as well as short-chain fatty acid (SCFA) profiles. The ZEN reduced the microbial diversity in FRL but not in the PARL fraction. The abundance of protozoa was higher after ZEN exposure in PARL, which may be related to their strong biodegradation capacity that, therefore, promoted protozoal growth. In contrast, α-zearalenol might compromise anaerobic fungi as indicated by reduced abundances in FRL and fairly negative correlations in both fractions. Total SCFA significantly increased in both fractions after ZEN exposure, while the SCFA profile only changed marginally. Concluding, a single ZEN challenge caused changes in the rumen ecosystem soon after intake, including ruminal eukaryotes, that should be the subject of future studies.


Assuntos
Microbiota , Zearalenona , Feminino , Bovinos , Animais , Zearalenona/toxicidade , Zearalenona/metabolismo , Rúmen/metabolismo , Dieta/veterinária , Ácidos Graxos Voláteis/metabolismo , Fermentação , Ração Animal/análise , Lactação/metabolismo
5.
J Agric Food Chem ; 71(4): 2143-2151, 2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36649058

RESUMO

The objective of the study was to investigate the efficacy of bentonite and fumonisin esterase, separately or combined, in mitigating the effects of aflatoxins (AF) and fumonisins (FUM) in Boran and Friesian-Boran crossbreed cattle. These effects were studied by measuring mycotoxins, their metabolites, and biomarkers that relate to animal health, productivity, and food safety. The study was divided into three experiments each lasting for 2 weeks. Cows in experiment 1 received in random order aflatoxin B1 (AFB1) [788 µg/cow/day (69.7 µg/kg dry matter intake (DMI)) for Borans and 2,310 µg/cow/day (154 µg/kg DMI) for crossbreeds], bentonite (60 g/cow/day), or both AFB1 and bentonite. Boran cows in experiment 2 received in random order FUM (12.4 mg/cow/day (1.1 mg/kg DMI)), fumonisin esterase (120 U/cow/day), or both FUM and fumonisin esterase. Boran cows in experiment 3 received in random order AFB1 (952 µg/cow/day (84.2 µg/kg DMI)) + FUM (30.4 mg/cow/day (2.7 mg/kg DMI)), bentonite (60 g/cow/day) + fumonisin esterase (120 U/cow/day), or both AFB1 + FUM and bentonite + fumonisin esterase. Feeding AFB1 and/or FUM contaminated feed with or without the addition of the detoxifiers for 14 days did not affect DMI, milk composition, hematology, and blood biochemical parameters. The addition of bentonite in a diet contaminated with AFB1 led to a decrease in milk aflatoxin M1 (AFM1) concentration of 30% and 43%, with the carry-over subsequently decreasing from 0.35% to 0.20% and 0.08% to 0.06% for crosses and Borans, respectively. No significant change was observed in the sphinganine/sphingosine (Sa/So) ratio following feeding with FUM alone or in combination with fumonisin esterase; however, the ability of fumonisin esterase to hydrolyze FUM into less toxic fully hydrolyzed FUM and partially hydrolyzed FUM was evident in the rumen fluid and feces. These results indicate bentonite was effective in decreasing AFM1 concentration in milk, and AFB1 and AFM1 in plasma, while fumonisin esterase can convert FUM into less toxic metabolites and can be a suitable addition to feed cocontaminated with AFB1 and FUM.


Assuntos
Aflatoxinas , Fumonisinas , Animais , Bovinos , Feminino , Aflatoxina B1/análise , Aflatoxina M1/análise , Aflatoxina M1/metabolismo , Aflatoxinas/metabolismo , Ração Animal/análise , Bentonita , Fumonisinas/análise , Quênia , Lactação , Leite/química
6.
Toxins (Basel) ; 15(1)2023 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-36668868

RESUMO

The estrogenic mycotoxin zearalenone (ZEN) is a common contaminant of animal feed. Effective strategies for the inactivation of ZEN in feed are required. The ZEN-degrading enzyme zearalenone hydrolase ZenA (EC 3.1.1.-, commercial name ZENzyme®, BIOMIN Holding GmbH, Getzersdorf, Austria) converts ZEN to hydrolyzed ZEN (HZEN), thereby enabling a strong reduction in estrogenicity. In this study, we investigated the efficacy of ZenA added to feed to degrade ZEN in the gastrointestinal tract of three monogastric animal species, i.e., pigs, chickens, and rainbow trout. For each species, groups of animals received (i) feed contaminated with ZEN (chickens: 400 µg/kg, pigs: 200 µg/kg, rainbow trout: 2000 µg/kg), (ii) feed contaminated with ZEN and supplemented with ZenA, or (iii) uncontaminated feed. To investigate the fate of dietary ZEN in the gastrointestinal tract in the presence and absence of ZenA, concentrations of ZEN and ZEN metabolites were analyzed in digesta of chickens and rainbow trout and in feces of pigs. Upon ZenA administration, concentrations of ZEN were significantly decreased and concentrations of the degradation product HZEN were significantly increased in digesta/feces of each investigated animal species, indicating degradation of ZEN by ZenA in the gastrointestinal tract. Moreover, upon addition of ZenA to the diet, the concentration of the highly estrogenic ZEN metabolite α-ZEL was significantly reduced in feces of pigs. In conclusion, ZenA was effective in degrading ZEN to HZEN in the gastrointestinal tract of chickens, pigs, and rainbow trout, and counteracted formation of α-ZEL in pigs. Therefore, ZenA could find application as a ZEN-degrading feed additive for these animal species.


Assuntos
Micotoxinas , Oncorhynchus mykiss , Zearalenona , Suínos , Animais , Zearalenona/metabolismo , Oncorhynchus mykiss/metabolismo , Galinhas/metabolismo , Trato Gastrointestinal/metabolismo , Ração Animal/análise
7.
Microorganisms ; 10(12)2022 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-36557638

RESUMO

Warm and humid climatic conditions coupled with poor agricultural practices in sub-Saharan Africa favor the contamination of food and feed by Aspergillus flavus and Fusarium verticillioides fungi, which subsequently may produce aflatoxins (AFs) and fumonisins (FBs), respectively. The growth of fungi and the production of mycotoxins are influenced by physical (temperature, pH, water activity, light and aeration), nutritional, and biological factors. This study aimed at optimizing the conditions for the laboratory production of large quantities of AFs and FBs for use in the animal experiments. A. flavus and F. verticillioides strains, previously isolated from maize in Kenya, were used. Levels of AFB1 and total FBs (FB1, FB2, and FB3) in different growth substrates were screened using ELISA methods. Maize kernels inoculated with three different strains of A. flavus simultaneously and incubated at 29 °C for 21 days had the highest AFB1 level of 12,550 ± 3397 µg/kg of substrate. The highest level of total FBs (386,533 ± 153,302 µg/kg of substrate) was detected in cracked maize inoculated with three different strains of F. verticillioides and incubated for 21 days at temperatures of 22-25 °C in a growth chamber fitted with yellow light. These two methods are recommended for the mass production of AFB1 and FBs for animal feeding trials.

8.
Toxins (Basel) ; 14(2)2022 02 11.
Artigo em Inglês | MEDLINE | ID: mdl-35202163

RESUMO

Fumonisins, a group of highly prevalent and toxic mycotoxins, are suspected to be causal agents of several diseases in animals and humans. In the animal feed industry, fumonisin esterase is used as feed additive to prevent mycotoxicosis caused by fumonisins. In humans, a popular dosage form for dietary supplements, with high patient acceptance for oral intake, is capsule ingestion. Thus, fumonisin esterase provided in a capsule could be an effective strategy against fumonisin intoxication in humans. To determine the efficacy of fumonisin esterase through capsule ingestion, two modes of application were compared using piglets in a small-scale preliminary study. The enzyme was administered intraorally (in-feed analogue) or intragastrically (capsule analogue), in combination with fumonisin B1 (FB1). Biomarkers for FB1 exposure; namely FB1, hydrolysed FB1 (HFB1) and partially hydrolysed forms (pHFB1a and pHFB1b), were measured both in serum and faeces using a validated liquid chromatography-tandem mass spectrometry (LC-MS/MS) method, and toxicokinetic parameters were calculated. Additionally, the serum sphinganine/sphingosine (Sa/So) ratio, a biomarker of effect, was determined using LC-MS/MS. A significantly higher Sa/So ratio was shown in the placebo group compared to both esterase treatments, demonstrating the efficacy of the esterase. Moreover, a significant decrease in serum FB1 area under the concentration-time curve (AUC) and an increase of faecal HFB1 AUC were observed after intraoral esterase administration. However, these effects were not observed with statistical significance after intragastric esterase administration with the current sample size.


Assuntos
Esterases/administração & dosagem , Esterases/sangue , Esterases/metabolismo , Esterases/farmacologia , Fumonisinas/sangue , Fumonisinas/metabolismo , Fumonisinas/toxicidade , Administração Oral , Animais , Biomarcadores/sangue , Feminino , Humanos , Inativação Metabólica , Infusões Parenterais , Masculino , Modelos Animais , Projetos Piloto , Suínos , Toxicocinética
9.
Porcine Health Manag ; 7(1): 61, 2021 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-34903306

RESUMO

BACKGROUND: Porcine ear necrosis (PEN) in pigs is characterized by a blue to black discoloration of the tip or margin of the ear followed by necrosis. The present study investigated the prevalence of PEN in a Belgian pig farm with PEN problems in nursery pigs, the effect of a mycotoxin detoxifier added to the feed on PEN prevalence, and the impact of PEN on the piglets' growth. Six consecutive batches of weaned piglets [565-751 piglets per batch, (n = 3898)] were included. For each weaning batch, the presence and severity of PEN during the nursery period (3-10 weeks of age) were recorded weekly. Average daily gain (ADG) was calculated by weighing 597 individual piglets divided over the six batches. Additionally different mycotoxins were measured in the feed using LC-MS/MS analysis, and to three randomly selected batches, a mycotoxin detoxifier (Mycofix® Plus 5E, Biomin) was added to the feed. RESULTS: At the end of the nursery period, 11.0-32.0% of the piglets in each batch were affected. The prevalence increased with the number of weeks post-weaning, especially from week 4 after weaning onwards. Mild, moderate, severe and very severe lesions represented 84.6%, 14.0%, 1.3% and 0.1% of all lesions, respectively. Different mycotoxins were present in the feed, but all at low concentrations. The mean ADG (± SD) for pigs without (n = 243) and with (n = 158) lesions was 391 g (± 71 g) and 394 g (± 65 g), respectively (P > 0.05). The ADG for mildly affected (387 g ± 68 g) and moderately affected piglets (420 g ± 44 g) was not significantly different (P > 0.05). The PEN prevalence in the batches without or with the mycotoxin detoxifier was 25% and 22%, respectively (P > 0.05). CONCLUSIONS: Twenty-three percent of animals showed lesions at the end of the nursery. Affected pigs did not have a lower ADG compared to non-affected animals, which might be explained by the fact that most affected piglets only had mild lesions. The addition of a mycotoxin detoxifier did not influence the prevalence of PEN, possibly because of the low levels of mycotoxin contamination. Further research is warranted to assess the impact of more severe PEN lesions and the effect of control measures.

10.
Toxins (Basel) ; 13(10)2021 10 10.
Artigo em Inglês | MEDLINE | ID: mdl-34679007

RESUMO

We evaluated the effects of a treatment diet contaminated with 1.7 mg deoxynivalenol and 3.5 mg fumonisins (B1, B2 and B3) per kg ration on immune status and peripheral blood gene expression profiles in finishing-stage Angus steers. The mycotoxin treatment diet was fed for a period of 21 days followed by a two-week washout period during which time all animals consumed the control diet. Whole-blood leukocyte differentials were performed weekly throughout the experimental and washout period. Comparative profiles of CD4+ and CD8+ T cells, along with bactericidal capacity of circulating neutrophils and monocytes were evaluated at 0, 7, 14, 21 and 35 days. Peripheral blood gene expression was measured at 0, 7, 21 and 35 days via RNA sequencing. Significant increases in the percentage of CD4-CD8+ T cells were observed in treatment-fed steers after two weeks of treatment and were associated with decreased CD4:CD8 T-cell ratios at this same timepoint (p ≤ 0.10). No significant differences were observed as an effect of treatment in terms of bactericidal capacity at any timepoint. Dietary treatments induced major changes in transcripts associated with endocrine, metabolic and infectious diseases; protein digestion and absorption; and environmental information processing (inhibition of signaling and processing), as evaluated by dynamic impact analysis. DAVID analysis also suggested treatment effects on oxygen transport, extra-cellular signaling, cell membrane structure and immune system function. These results indicate that finishing-stage beef cattle are susceptible to the immunotoxic and transcript-inhibitory effects of deoxynivalenol and fumonisins at levels which may be realistically encountered in feedlot situations.


Assuntos
Bovinos/imunologia , Fumonisinas/toxicidade , Tricotecenos/toxicidade , Ração Animal/efeitos adversos , Animais , Linfócitos T CD4-Positivos , Linfócitos T CD8-Positivos , Bovinos/genética , Bovinos/metabolismo , Dieta/veterinária , Contaminação de Alimentos , Regulação da Expressão Gênica/efeitos dos fármacos , Sistema Imunitário/efeitos dos fármacos , Masculino
11.
Toxins (Basel) ; 13(9)2021 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-34564637

RESUMO

The poultry industry in sub-Saharan Africa (SSA) is faced with feed insecurity, associated with high cost of feeds, and feed safety, associated with locally produced feeds often contaminated with mycotoxins. Mycotoxins, including aflatoxins (AFs), fumonisins (FBs), trichothecenes, and zearalenone (ZEN), are common contaminants of poultry feeds and feed ingredients from SSA. These mycotoxins cause deleterious effects on the health and productivity of chickens and can also be present in poultry food products, thereby posing a health hazard to human consumers of these products. This review summarizes studies of major mycotoxins in poultry feeds, feed ingredients, and poultry food products from SSA as well as aflatoxicosis outbreaks. Additionally reviewed are the worldwide regulation of mycotoxins in poultry feeds, the impact of major mycotoxins in the production of chickens, and the postharvest use of mycotoxin detoxifiers. In most studies, AFs are most commonly quantified, and levels above the European Union regulatory limits of 20 µg/kg are reported. Trichothecenes, FBs, ZEN, and OTA are also reported but are less frequently analyzed. Co-occurrences of mycotoxins, especially AFs and FBs, are reported in some studies. The effects of AFs on chickens' health and productivity, carryover to their products, as well as use of mycotoxin binders are reported in few studies conducted in SSA. More research should therefore be conducted in SSA to evaluate occurrences, toxicological effects, and mitigation strategies to prevent the toxic effects of mycotoxins.


Assuntos
Ração Animal/microbiologia , Galinhas/crescimento & desenvolvimento , Microbiologia de Alimentos , Micotoxinas/análise , África Subsaariana , Criação de Animais Domésticos , Animais , Feminino , Masculino
12.
Gut Pathog ; 13(1): 44, 2021 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-34217373

RESUMO

BACKGROUND: Intestinal epithelial cells are challenged by mycotoxins and many bacterial pathogens. It was previously shown that the mycotoxin deoxynivalenol (DON) as well as Campylobacter (C.) jejuni have a negative impact on gut integrity. Recently, it was demonstrated that DON increased the load of C. jejuni in the gut and inner organs. Based on this finding, it was hypothesized the DON metabolite (deepoxy-deoxynivalenol, DOM-1) should be able to reduce the negative effects of DON on colonization and translocation of C. jejuni in broilers, since it lacks the epoxide ring, which is responsible for the toxicity of DON. METHODS: A total of 180 broiler chickens were housed in floor pens on wood shavings with feed and water provided ad libitum. Birds were divided into six groups (n = 30 with 5 replicates/group): 1. Control, 2. DOM-1, 3. DON, 4. DOM-1 + C. jejuni, 5. DON + C. jejuni, 6. C. jejuni. At day 14, birds of groups 4, 5 and 6 were orally inoculated via feeding tube (gavage) with 1-ml of a PBS suspension containing 1 × 108 CFU of C. jejuni NCTC 12744. The performance parameters: body weight (BW), body weight gain (BWG), and feed intake of the birds were determined. At 7, 14, and 21 days post infection, samples from liver, spleen, duodenum, jejunum and cecum were aseptically collected and processed for bacteriological investigations. Finally, at each killing time point, segments of duodenum, jejunum and cecum were harvested and prepared for Ussing chamber studies to measure the paracellular mannitol fluxes. RESULTS: A significant decrease in body weight was observed for chickens receiving the DON diet with or without C. jejuni compared to the other groups. Furthermore, it was found that the co-exposure of birds to DON and C. jejuni resulted in a higher C. jejuni load not only in the gut but also in liver and spleen due to increased paracellular permeability of the duodenum, jejunum and cecum. On the contrary, DOM-1 supplementation in the feed improved the birds' performance and led to a better feed conversion ratio throughout the trial. Furthermore, DOM-1 did not negatively affect gut permeability and decreased the C. jejuni counts in the intestine and internal organs. CONCLUSION: Altogether, the presence of DOM-1 in the feed as a result of the enzymatic biotransformation of DON leads to a lower C. jejuni count in the intestine and better feed conversion ratio. Moreover, this study demonstrates that the detoxification product of DON, DOM-1, does not have negative effects on the gastrointestinal tract and reduces the Campylobacter burden in chickens and also the risk for human infection.

13.
Toxins (Basel) ; 13(2)2021 01 22.
Artigo em Inglês | MEDLINE | ID: mdl-33499402

RESUMO

The mycotoxin zearalenone (ZEN) is a frequent contaminant of animal feed and is well known for its estrogenic effects in animals. Cattle are considered less sensitive to ZEN than pigs. However, ZEN has previously been shown to be converted to the highly estrogenic metabolite α-zearalenol (α-ZEL) in rumen fluid in vitro. Here, we investigate the metabolism of ZEN in the reticulorumen of dairy cows. To this end, rumen-fistulated non-lactating Holstein Friesian cows (n = 4) received a one-time oral dose of ZEN (5 mg ZEN in 500 g concentrate feed) and the concentrations of ZEN and ZEN metabolites were measured in free rumen liquid from three reticulorumen locations (reticulum, ventral sac and dorsal mat layer) during a 34-h period. In all three locations, α-ZEL was the predominant ZEN metabolite and ß-zearalenol (ß-ZEL) was detected in lower concentrations. ZEN, α-ZEL and ß-ZEL were eliminated from the ventral sac and reticulum within 34 h, yet low concentrations of ZEN and α-ZEL were still detected in the dorsal mat 34 h after ZEN administration. In a second step, we investigated the efficacy of the enzyme zearalenone hydrolase ZenA (EC 3.1.1.-, commercial name ZENzyme®, BIOMIN Holding GmbH, Getzersdorf, Austria) to degrade ZEN to the non-estrogenic metabolite hydrolyzed zearalenone (HZEN) in the reticulorumen in vitro and in vivo. ZenA showed a high ZEN-degrading activity in rumen fluid in vitro. When ZenA was added to ZEN-contaminated concentrate fed to rumen-fistulated cows (n = 4), concentrations of ZEN, α-ZEL and ß-ZEL were significantly reduced in all three reticulorumen compartments compared to administration of ZEN-contaminated concentrate without ZenA. Upon ZenA administration, degradation products HZEN and decarboxylated HZEN were detected in the reticulorumen. In conclusion, endogenous metabolization of ZEN in the reticulorumen increases its estrogenic potency due to the formation of α-ZEL. Our results suggest that application of zearalenone hydrolase ZenA as a feed additive may be a promising strategy to counteract estrogenic effects of ZEN in cattle.


Assuntos
Suplementos Nutricionais , Hidrolases/administração & dosagem , Rúmen/enzimologia , Zearalenona/metabolismo , Ração Animal , Animais , Bovinos , Indústria de Laticínios , Feminino , Microbiologia de Alimentos , Hidrolases/metabolismo , Hidrólise , Inativação Metabólica , Cinética , Masculino , Zeranol/análogos & derivados , Zeranol/metabolismo
14.
Front Vet Sci ; 7: 573894, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33363229

RESUMO

Deoxynivalenol (DON) is one of the major health concern in poultry production as it targets epithelial cells of the gastrointestinal tract and contributes to the loss of the epithelial barrier function. It is well-documented that DON severely compromises various important intestinal functions in coincidence with aggravated clinical symptoms in livestock. In addition, a prolonged persistence of intestinal pathogens (e.g., Salmonella, Clostridium) in the gut has also been reported in pigs and chickens, respectively. Similar to DON, recent studies demonstrated that an experimental Campylobacter infection has severe consequences on gut health. Through experimental infection, it was found that Campylobacter (C.) jejuni negatively affects the integrity of the intestine and promotes the translocation of bacteria from the gut to inner organs. So far, no data are available investigating the simultaneous exposure of DON and C. jejuni in broilers albeit both are widely distributed. Thus, the aim of the present study was to explore the interaction between DON and C. jejuni which is of a significant public and animal health concern as it may affect the prevalence and the ability to control this pathogen. Following oral infection of birds at 14 days of age with C. jejuni NCTC 12744, we show that the co-exposure to DON and C. jejuni has a considerable consequence on C. jejuni loads in chicken gut as well as on gut permeability of the birds. A reduced growth performance was found for DON and/or C. jejuni exposed birds. Furthermore, it was found that the co-exposure of DON and C. jejuni aggravated the negative effect on paracellular permeability of the intestine already noticed for the bacteria or the mycotoxin alone by the Ussing chamber technique at certain times or intestinal segments. Furthermore, the increased paracellular permeability promotes the translocation of C. jejuni and E. coli to inner organs, namely liver and spleen. Interestingly, C. jejuni loads in the intestine were higher in DON-fed groups indicating a supportive growth effect of the mycotoxin. The actual study demonstrates that co-exposure of broiler chickens to DON and C. jejuni has not only considerable consequences on gut integrity but also on bacterial balance. These findings indicate that the co-exposure of broiler chickens to DON and C. jejuni could have a significant impact on gut health and bacteria translocation leading to an increased risk for public health.

15.
Toxins (Basel) ; 12(12)2020 12 03.
Artigo em Inglês | MEDLINE | ID: mdl-33287105

RESUMO

Mycotoxins are common in grains in sub-Saharan Africa and negatively impact human and animal health and production. This study assessed occurrences of mycotoxins, some plant, and bacterial metabolites in 16 dairy and 27 poultry feeds, and 24 feed ingredients from Machakos town, Kenya, in February and August 2019. We analyzed the samples using a validated multi-toxin liquid chromatography-tandem mass spectrometry method. A total of 153 mycotoxins, plant, and bacterial toxins, were detected in the samples. All the samples were co-contaminated with 21 to 116 different mycotoxins and/or metabolites. The commonly occurring and EU regulated mycotoxins reported were; aflatoxins (AFs) (70%; range 0.2-318.5 µg/kg), deoxynivalenol (82%; range 22.2-1037 µg/kg), ergot alkaloids (70%; range 0.4-285.7 µg/kg), fumonisins (90%; range 32.4-14,346 µg/kg), HT-2 toxin (3%; range 11.9-13.8 µg/kg), ochratoxin A (24%; range 1.1-24.3 µg/kg), T-2 toxin (4%; range 2.7-5.2 µg/kg) and zearalenone (94%; range 0.3-910.4 µg/kg). Other unregulated emerging mycotoxins and metabolites including Alternaria toxins, Aspergillus toxins, bacterial metabolites, cytochalasins, depsipeptides, Fusarium metabolites, metabolites from other fungi, Penicillium toxins, phytoestrogens, plant metabolites, and unspecific metabolites were also detected at varying levels. Except for total AFs, where the average contamination level was above the EU regulatory limit, all the other mycotoxins detected had average contamination levels below the limits. Ninety-six percent of all the samples were contaminated with more than one of the EU regulated mycotoxins. These co-occurrences may cause synergistic and additive health effects thereby hindering the growth of the Kenyan livestock sector.


Assuntos
Ração Animal/análise , Contaminação de Alimentos/análise , Toxinas Biológicas/análise , Animais , Bovinos , Monitoramento Ambiental , Quênia , Aves Domésticas
16.
Toxins (Basel) ; 12(10)2020 09 29.
Artigo em Inglês | MEDLINE | ID: mdl-33003423

RESUMO

Lipopolysaccharides (LPS), also termed endotoxins, are the major component of the outer membrane of Gram-negative bacteria. In general, endotoxins in the intestine are considered harmless in healthy animals. However, different stressors, such as heat stress, can lead to a compromised gut barrier, resulting in endotoxin translocation. Chickens are considered to be less sensitive to the effects of LPS compared with other species, for example, humans, pigs, or calves, probably because of the lack of the functional-specific TRAM-TRIF signalling pathway (MyD88-independent). Therefore, six LPS preparations (three different strains with two different preparation methods each) were compared in murine macrophages and characterized according to their MyD88-dependent pathway activation. All tested LPS preparations induced a strong inflammatory response after 4 and 24 h on a murine macrophage cell line. However, there was a similar strong response in the gene expression profile as well as production of nitrite oxide and TNF-alpha from LPS of different strains and preparation methods. On the basis of the results of the in vitro study, one LPS preparation was chosen for the subsequent in vivo study with broilers to assess the effect of an oral LPS bolus (E. coli O55:B5 phenol extracted; 2 mg/kg b.w.) during heat stress conditions (10 h, 36 °C). The most pronounced effects were seen in broilers receiving the oral LPS bolus during heat stress conditions. The endotoxin activity in the intestine as well as the serum concentration of the 3-OH C14 (part of LPS) were increased. In addition, an increased expression of genes related to inflammation and stress response (e.g., IL-6, IL-1beta, HSP70) was observed, whereas the expression of genes associated with gut health (e.g., MUC2, FABP2) was decreased. To conclude, an increase of intestinal LPS combined with heat stress can pose a risk to animal health.


Assuntos
Galinhas , Citocinas/metabolismo , Resposta ao Choque Térmico , Temperatura Alta/efeitos adversos , Mediadores da Inflamação/metabolismo , Intestino Delgado/efeitos dos fármacos , Lipopolissacarídeos/toxicidade , Administração Oral , Animais , Biomarcadores/sangue , Intestino Delgado/imunologia , Intestino Delgado/metabolismo , Lipopolissacarídeos/administração & dosagem , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Camundongos , Ácidos Mirísticos/sangue , Células RAW 264.7 , Regulação para Cima
17.
J Anim Sci ; 98(1)2020 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-31944242

RESUMO

Mycotoxin deactivators are a widely used strategy to abrogate negative effects of mycotoxin-contaminated feed. It has not been adequately evaluated whether these deactivators may detoxify bacterial toxins in the intestinal lumen and subsequently lower the inflammatory response in chickens. The present objective was to study the effect of a multicomponent mycotoxin deactivator (B), containing a bentonite and a bacterial strain capable to enzymatically biotransform trichothecenes especially deoxynivalenol (DON), when supplemented to a DON-contaminated feed in combination with an oral lipopolysaccharide challenge on visceral organ size, expression of innate immune genes and mucosal permeability in the small intestine as well as on the cecal bacterial composition and metabolites in broiler chickens. Eighty 1-d-old male chickens were randomly allotted to four treatment groups in two replicate batches (n = 10/treatment/replicate): 1) basal diet without DON (CON), 2) CON diet supplemented with B (2.5 mg B/kg feed) (CON-B), 3) CON diet contaminated with 10 mg DON/kg feed (DON), and 4) DON diet supplemented with 2.5 mg B/kg feed (DON-B). In half of the chickens per treatment, effects were assessed under nonchallenge conditions, whereas in the other half of birds, to increase their intestinal bacterial toxin load, effects were tested after an oral challenge with 1 mg LPS/kg BW from Escherichia coli O55:B5 on the day before sampling. DON reduced (P < 0.05) the weight of bursa fabricii and thymus. DON increased the expression level of intestinal alkaline phosphatase at the duodenal mucosa (P = 0.027) but did not modify jejunal gene expression and mucosal permeability. The LPS challenge decreased the jejunal MUC2 expression but increased ZO1 and IL6 expression compared to the unchallenged animals (P < 0.05). DON × B interactions indicated lower expression of IL10 in duodenum and NFKB in jejunum with the B diet but higher expression with the DON-B diet (P = 0.050). Furthermore, the B lowered jejunal expression of NFKB and IL6 but only in LPS-challenged chickens (P < 0.05). Alterations in the cecal microbiota composition and VFA profile were likely associated with alterations in host physiology in the small intestine caused by DON, B, and LPS. According to the present data, B appeared to have potential to detoxify antigens other than DON in the intestinal lumen of chickens, whereby the toxin load may limit the efficacy of B to modify the intestinal and systemic response as indicated by interactions of DON, B, and LPS.


Assuntos
Galinhas/fisiologia , Suplementos Nutricionais/análise , Contaminação de Alimentos , Microbioma Gastrointestinal/efeitos dos fármacos , Micotoxinas/efeitos adversos , Tricotecenos/efeitos adversos , Ração Animal/análise , Animais , Ceco/microbiologia , Galinhas/imunologia , Galinhas/microbiologia , Dieta/veterinária , Mucosa Intestinal/microbiologia , Intestino Delgado/imunologia , Intestinos/imunologia , Jejuno/imunologia , Lipopolissacarídeos/administração & dosagem , Masculino , Tricotecenos/farmacologia
18.
Arch Toxicol ; 93(7): 2057-2064, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31030221

RESUMO

In recent years, the deleterious effects attributed to mycotoxins, in particular on the intestine, faced increased attention and it was shown that deoxynivalenol (DON) causes adverse effects on gut health. In this context, it has been repeatedly reported that DON can alter the intestinal morphology, disrupt the intestinal barrier and reduce nutrient absorption. The underlying mechanism of a compromised intestinal barrier caused by DON in chickens has yet to be illustrated. Although, DON is rapidly absorbed from the upper parts of the small intestine, the effects on the large intestine cannot be excluded. Additionally, a damaging effect of DON on the gut epithelium might decrease the resistance of the gut against infectious agents. Consequently, the objectives of the present studies were: (1) to investigate the impact of DON on the epithelial paracellular permeability by demonstrating the mucosal to serosal flux of 14C-mannitol in the small and large intestine applying Ussing chambers and (2) to delineate the effects of DON on the colonization and translocation of Escherichia coli. Both parameters are well suited as potential indicators for gut barrier failure. For this, a total of 75 one-day-old Ross 308 broiler chickens were housed in floor pens on wood shavings with feed and water provided ad libitum. Birds were randomly allocated to three different groups (n = 25 with 5 replicates/group) and were fed for 5 weeks with either contaminated diets (5 or 10 mg DON/kg feed) or basal diets (control). Body weight (BW) and BW gain of birds in the group fed with 10 mg/kg DON were significantly lower than in group with 5 mg/kg DON and the control group. Moreover, the mannitol flux in jejunum and cecum was significantly (P < 0.05) higher in DON-fed groups compared to control birds. Consistent with this, DON enhanced the translocation of E. coli with a higher number of bacteria encountered in the spleen and liver. Altogether, the actual results verified that DON can alter the intestinal paracellular permeability in broiler chickens and facilitates the translocation of enteric microorganisms such as E. coli to extra-intestinal organs. Considering that moderate levels of DON are present in feed, the consumption of DON-contaminated feed can induce an intestinal breakdown with negative consequences on broiler health.


Assuntos
Translocação Bacteriana/efeitos dos fármacos , Ceco/efeitos dos fármacos , Galinhas , Absorção Intestinal/efeitos dos fármacos , Mucosa Intestinal/efeitos dos fármacos , Jejuno/efeitos dos fármacos , Tricotecenos/toxicidade , Ração Animal/normas , Animais , Peso Corporal/efeitos dos fármacos , Ceco/metabolismo , Ceco/microbiologia , Galinhas/metabolismo , Escherichia coli/isolamento & purificação , Feminino , Mucosa Intestinal/metabolismo , Mucosa Intestinal/microbiologia , Jejuno/metabolismo , Jejuno/microbiologia , Masculino , Permeabilidade
19.
Poult Sci ; 98(6): 2598-2607, 2019 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-30690607

RESUMO

The aim of this study was to evaluate the effect of ampicillin, an organic acid-based feed additive and a synbiotic preparation on the prevalence of antibiotic-resistant E. coli in the ceca of broilers. A total of 2000 broiler chickens (Ross 708) were randomly assigned to 5 groups with 8 replicates. The negative control group was the only group that was not subjected to avian pathogenic E. coli challenge, while all the other 4 groups received a multi-resistant E. coli strain that was resistant to ampicillin, cephalexin, and nalidixic acid as an oral challenge. The second group served as a challenge control, and the third group received the antibiotic ampicillin via water for 5 d. The fourth group received a feed additive based on organic acids and cinnamaldehyde, and the fifth group received a synbiotic preparation via feed and water. On day 17 and 38 of the trial, cecal samples from 3 birds from each of the 40 pens were obtained, and the E. coli counts and abundances of antibiotic-resistant E. coli were determined. Oral challenge with an avian pathogenic E. coli strain did not influence the performance, and there was no significant difference in growth performance between groups. The total E. coli count was lower (P < 0.05) in the group supplemented with the synbiotic than in the challenge control group on day 38 of the trial. Administration of an antibiotic for 5 d led to a significant increase in the abundance of E. coli strains resistant to ampicillin, amoxicillin-clavulanic acid, cefoxitin, and ceftriaxone. There was no increase in the abundance of antibiotic-resistant E. coli observed in the groups that received feed supplemented with an organic acid/cinnamaldehyde-based feed additive or a synbiotic. Moreover, the effects of the tested feed additives on the prevalence of resistant E. coli are demonstrated by the lower ceftriaxone minimal inhibitory concentration values for this group than for the antibiotic group. Additionally, the synbiotic group exhibited lower ceftriaxone minimal inhibitory concentration values than the antibiotic group.


Assuntos
Ampicilina/farmacologia , Antibacterianos/farmacologia , Galinhas , Farmacorresistência Bacteriana Múltipla , Infecções por Escherichia coli/veterinária , Simbióticos/administração & dosagem , Acroleína/administração & dosagem , Acroleína/análogos & derivados , Ração Animal/análise , Animais , Ceco/microbiologia , Dieta/veterinária , Escherichia coli , Infecções por Escherichia coli/tratamento farmacológico , Masculino
20.
Poult Sci ; 96(11): 4053-4060, 2017 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-29050428

RESUMO

Increasing antibiotic resistance is a major public health concern. Fluoroquinolones are used to treat and prevent poultry diseases worldwide. Fluoroquinolone resistance rates are high in their countries of use. The aim of this study was to evaluate the effect of an acids-based feed additive, as well as fluoroquinolone antibiotics, on the prevalence of antibiotic-resistant E. coli. A total of 480 broiler chickens (Ross 308) were randomly assigned to 3 treatments: a control group receiving a basal diet; a group receiving a feed additive (FA) based on formic acid, acetic acid and propionic acid; and an antibiotic enrofloxacin (AB) group given the same diet, but supplemented with enrofloxacin in water. A pooled fecal sample of one-day-old chicks was collected upon arrival at the experimental farm. On d 17 and d 38 of the trial, cecal samples from each of the 8 pens were taken, and the count of E. coli and antibiotic-resistant E. coli was determined.The results of the present study show a high prevalence of antibiotic-resistant E. coli in one-day-old chicks. Supplementation of the diet with FA and treatment of broilers with AB did not have a significant influence on the total number of E. coli in the cecal content on d 17 and d 38 of the trial. Supplementation with FA contributed to better growth performance and to a significant decrease (P ≤ 0.05) in E. coli resistant to ampicillin and tetracycline compared to the control and AB groups, as well as to a decrease (P ≤ 0.05) in sulfamethoxazole and ciprofloxacin-resistant E. coli compared to the AB group. Treatment with AB increased (P ≤ 0.05) the average daily weight compared to the control group and increased (P ≤ 0.05) the number of E. coli resistant to ciprofloxacin, streptomycin, sulfamethoxazole and tetracycline; it also decreased (P ≤ 0.05) the number of E. coli resistant to cefotaxime and extended spectrum beta-lactamase- (ESBL-) producing E. coli in the ceca of broilers.


Assuntos
Antibacterianos/farmacologia , Galinhas , Suplementos Nutricionais/análise , Farmacorresistência Bacteriana , Infecções por Escherichia coli/veterinária , Fluoroquinolonas/farmacologia , Doenças das Aves Domésticas/epidemiologia , Ácido Acético/administração & dosagem , Ácido Acético/metabolismo , Ração Animal/análise , Animais , Ceco/microbiologia , Dieta/veterinária , Enrofloxacina , Escherichia coli/efeitos dos fármacos , Infecções por Escherichia coli/tratamento farmacológico , Infecções por Escherichia coli/epidemiologia , Infecções por Escherichia coli/microbiologia , Feminino , Formiatos/administração & dosagem , Formiatos/metabolismo , Masculino , Doenças das Aves Domésticas/tratamento farmacológico , Doenças das Aves Domésticas/microbiologia , Prevalência , Propionatos/administração & dosagem , Propionatos/metabolismo , Distribuição Aleatória
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA