Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 142
Filtrar
1.
Expert Rev Proteomics ; 21(5-6): 229-235, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38753566

RESUMO

INTRODUCTION: Regenerative myogenesis plays a crucial role in mature myofibers to counteract muscular injury or dysfunction due to neuromuscular disorders. The activation of specialized myogenic stem cells, called satellite cells, is intrinsically involved in proliferation and differentiation, followed by myoblast fusion and the formation of multinucleated myofibers. AREAS COVERED: This report provides an overview of the role of satellite cells in the neuromuscular system and the potential future impact of proteomic analyses for biomarker discovery, as well as the identification of novel therapeutic targets in muscle disease. The article reviews the ways in which the systematic analysis of satellite cells, myoblasts, and myocytes by single-cell proteomics can help to better understand the process of myofiber regeneration. EXPERT OPINION: In order to better comprehend satellite cell dysfunction in neuromuscular disorders, mass spectrometry-based proteomics is an excellent large-scale analytical tool for the systematic profiling of pathophysiological processes. The optimized isolation of muscle-derived cells can be routinely performed by mechanical/enzymatic dissociation protocols, followed by fluorescence-activated cell sorting in specialized flow cytometers. Ultrasensitive single-cell proteomics using label-free quantitation methods or approaches that utilize tandem mass tags are ideal bioanalytical approaches to study the pathophysiological role of stem cells in neuromuscular disease.


Assuntos
Proteômica , Células Satélites de Músculo Esquelético , Proteômica/métodos , Humanos , Células Satélites de Músculo Esquelético/metabolismo , Células Satélites de Músculo Esquelético/citologia , Animais , Desenvolvimento Muscular , Biomarcadores/metabolismo , Diferenciação Celular , Análise de Célula Única/métodos
2.
Eur J Transl Myol ; 34(2)2024 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-38787292

RESUMO

During the natural aging process, frailty is often associated with abnormal muscular performance. Although inter-individual differences exit, in most elderly the tissue mass and physiological functionality of voluntary muscles drastically decreases. In order to study age-related contractile decline, animal model research is of central importance in the field of biogerontology. Here we have analyzed wild type mouse muscle to establish a proteomic map of crude tissue extracts. Proteomics is an advanced and large-scale biochemical method that attempts to identify all accessible proteins in a given biological sample. It is a technology-driven approach that uses mass spectrometry for the characterization of individual protein species. Total protein extracts were used in this study in order to minimize the potential introduction of artefacts due to excess subcellular fractionation procedures. In this report, the proteomic survey of aged muscles has focused on organellar marker proteins, as well as proteins that are involved in cellular signaling, the regulation of ion homeostasis, bioenergetic metabolism and molecular chaperoning. Hence, this study has establish a proteomic reference map of a highly suitable model system for future aging research.

3.
Eur J Transl Myol ; 34(2)2024 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-38787300

RESUMO

Sarcopenia of old age is characterized by the progressive loss of skeletal muscle mass and concomitant decrease in contractile strength. Age-related skeletal muscle dysfunctions play a key pathophysiological role in the frailty syndrome and can result in a drastically diminished quality of life in the elderly. Here we have used mass spectrometric analysis of the mouse hindlimb musculature to establish the muscle protein constellation at advanced age of a widely used sarcopenic animal model. Proteomic results were further analyzed by systems bioinformatics of voluntary muscles. In this report, the proteomic survey of aged muscles has focused on the expression patterns of proteins involved in the contraction-relaxation cycle, membrane cytoskeletal maintenance and the formation of the extracellular matrix. This includes proteomic markers of the fast versus slow phenotypes of myosin-containing thick filaments and actin-containing thin filaments, as well as proteins that are associated with the non-sarcomeric cytoskeleton and various matrisomal layers. The bioanalytical usefulness of the newly established reference map was demonstrated by the comparative screening of normal versus dystrophic muscles of old age, and findings were verified by immunoblot analysis.

4.
Int J Mol Sci ; 25(7)2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38612612

RESUMO

Multiple myeloma (MM) is a plasma cell disorder representing the second most common blood cancer [...].


Assuntos
Neoplasias Hematológicas , Mieloma Múltiplo , Segunda Neoplasia Primária , Paraproteinemias , Humanos , Mieloma Múltiplo/tratamento farmacológico
5.
Proteomes ; 12(1)2024 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-38250815

RESUMO

This perspective article is concerned with the question of how proteomics, which is a core technique of systems biology that is deeply embedded in the multi-omics field of modern bioresearch, can help us better understand the molecular pathogenesis of complex diseases. As an illustrative example of a monogenetic disorder that primarily affects the neuromuscular system but is characterized by a plethora of multi-system pathophysiological alterations, the muscle-wasting disease Duchenne muscular dystrophy was examined. Recent achievements in the field of dystrophinopathy research are described with special reference to the proteome-wide complexity of neuromuscular changes and body-wide alterations/adaptations. Based on a description of the current applications of top-down versus bottom-up proteomic approaches and their technical challenges, future systems biological approaches are outlined. The envisaged holistic and integromic bioanalysis would encompass the integration of diverse omics-type studies including inter- and intra-proteomics as the core disciplines for systematic protein evaluations, with sophisticated biomolecular analyses, including physiology, molecular biology, biochemistry and histochemistry. Integrated proteomic findings promise to be instrumental in improving our detailed knowledge of pathogenic mechanisms and multi-system dysfunction, widening the available biomarker signature of dystrophinopathy for improved diagnostic/prognostic procedures, and advancing the identification of novel therapeutic targets to treat Duchenne muscular dystrophy.

6.
Clin Exp Immunol ; 215(2): 177-189, 2024 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-37917972

RESUMO

Patients with decompensated liver cirrhosis, in particular those classified as Childs-Pugh class C, are at increased risk of severe coronavirus disease-2019 (COVID-19) upon infection with severe acute respiratory coronavirus 2 (SARS-CoV-2). The biological mechanisms underlying this are unknown. We aimed to examine the levels of serum intrinsic antiviral proteins as well as alterations in the innate antiviral immune response in patients with decompensated liver cirrhosis. Serum from 53 SARS-CoV-2 unexposed and unvaccinated individuals, with decompensated liver cirrhosis undergoing assessment for liver transplantation, were screened using SARS-CoV-2 pseudoparticle and SARS-CoV-2 virus assays. The ability of serum to inhibit interferon (IFN) signalling was assessed using a cell-based reporter assay. Severity of liver disease was assessed using two clinical scoring systems, the Child-Pugh class and the MELD-Na score. In the presence of serum from SARS-CoV-2 unexposed patients with decompensated liver cirrhosis there was no association between SARS-CoV-2 pseudoparticle infection or live SARS-CoV-2 virus infection and severity of liver disease. Type I IFNs are a key component of the innate antiviral response. Serum from patients with decompensated liver cirrhosis contained elevated levels of auto-antibodies capable of binding IFN-α2b compared to healthy controls. High MELD-Na scores were associated with the ability of these auto-antibodies to neutralize type I IFN signalling by IFN-α2b but not IFN-ß1a. Our results demonstrate that neutralizing auto-antibodies targeting IFN-α2b are increased in patients with high MELD-Na scores. The presence of neutralizing type I IFN-specific auto-antibodies may increase the likelihood of viral infections, including severe COVID-19, in patients with decompensated liver cirrhosis.


Assuntos
COVID-19 , Interferon Tipo I , Hepatopatias , Transplante de Fígado , Humanos , Anticorpos , Cirrose Hepática
8.
Int J Mol Sci ; 24(21)2023 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-37958554

RESUMO

This paper describes a machine learning (ML) decision support system to provide a list of chemotherapeutics that individual multiple myeloma (MM) patients are sensitive/resistant to, based on their proteomic profile. The methodology used in this study involved understanding the parameter space and selecting the dominant features (proteomics data), identifying patterns of proteomic profiles and their association to the recommended treatments, and defining the decision support system of personalized treatment as a classification problem. During the data analysis, we compared several ML algorithms, such as linear regression, Random Forest, and support vector machines, to classify patients as sensitive/resistant to therapeutics. A further analysis examined data-balancing techniques that emerged due to the small cohort size. The results suggest that utilizing proteomics data is a promising approach for identifying effective treatment options for patients with MM (reaching on average an accuracy of 81%). Although this pilot study was limited by the small patient cohort (39 patients), which restricted the training and validation of the explored ML solutions to identify complex associations between proteins, it holds great promise for developing personalized anti-MM treatments using ML approaches.


Assuntos
Mieloma Múltiplo , Proteômica , Humanos , Proteômica/métodos , Projetos Piloto , Mieloma Múltiplo/tratamento farmacológico , Aprendizado de Máquina , Algoritmos , Máquina de Vetores de Suporte
9.
Cells ; 12(21)2023 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-37947638

RESUMO

Voluntary striated muscles are characterized by a highly complex and dynamic proteome that efficiently adapts to changed physiological demands or alters considerably during pathophysiological dysfunction. The skeletal muscle proteome has been extensively studied in relation to myogenesis, fiber type specification, muscle transitions, the effects of physical exercise, disuse atrophy, neuromuscular disorders, muscle co-morbidities and sarcopenia of old age. Since muscle tissue accounts for approximately 40% of body mass in humans, alterations in the skeletal muscle proteome have considerable influence on whole-body physiology. This review outlines the main bioanalytical avenues taken in the proteomic characterization of skeletal muscle tissues, including top-down proteomics focusing on the characterization of intact proteoforms and their post-translational modifications, bottom-up proteomics, which is a peptide-centric method concerned with the large-scale detection of proteins in complex mixtures, and subproteomics that examines the protein composition of distinct subcellular fractions. Mass spectrometric studies over the last two decades have decisively improved our general cell biological understanding of protein diversity and the heterogeneous composition of individual myofibers in skeletal muscles. This detailed proteomic knowledge can now be integrated with findings from other omics-type methodologies to establish a systems biological view of skeletal muscle function.


Assuntos
Proteoma , Proteômica , Humanos , Proteoma/metabolismo , Proteômica/métodos , Fibras Musculares Esqueléticas/metabolismo , Músculo Esquelético/metabolismo , Espectrometria de Massas
10.
Eur J Transl Myol ; 33(4)2023 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-37846661

RESUMO

Duchenne muscular dystrophy is a highly progressive muscle wasting disease of early childhood and characterized by complex pathophysiological and histopathological changes in the voluntary contractile system, including myonecrosis, chronic inflammation, fat substitution and reactive myofibrosis. The continued loss of functional myofibres and replacement with non-contractile cells, as well as extensive tissue scarring and decline in tissue elasticity, leads to severe skeletal muscle weakness. In addition, dystrophic muscles exhibit a greatly diminished regenerative capacity to counteract the ongoing process of fibre degeneration. In normal muscle tissues, an abundant stem cell pool consisting of satellite cells that are localized between the sarcolemma and basal lamina, provides a rich source for the production of activated myogenic progenitor cells that are involved in efficient myofibre repair and tissue regeneration. Interestingly, the self-renewal of satellite cells for maintaining an essential pool of stem cells in matured skeletal muscles is increased in dystrophin-deficient fibres. However, satellite cell hyperplasia does not result in efficient recovery of dystrophic muscles due to impaired asymmetric cell divisions. The lack of expression of the full-length dystrophin isoform Dp427-M, which is due to primary defects in the DMD gene,  appears to affect key regulators of satellite cell polarity causing a reduced differentiation of myogenic progenitors, which are essential for myofibre regeneration. This review outlines the complexity of dystrophinopathy and describes the importance of the pathophysiological role of satellite cell dysfunction. A brief discussion of the bioanalytical usefulness of single cell proteomics for future studies of satellite cell biology is provided.

11.
Expert Rev Proteomics ; 20(7-9): 125-142, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37668143

RESUMO

INTRODUCTION: Skeletal muscles contain large numbers of high-molecular-mass protein complexes in elaborate membrane systems. Integral membrane proteins are involved in diverse cellular functions including the regulation of ion handling, membrane homeostasis, energy metabolism and force transmission. AREAS COVERED: The proteomic profiling of membrane proteins and large protein assemblies in skeletal muscles are outlined in this article. This includes a critical overview of the main biochemical separation techniques and the mass spectrometric approaches taken to study membrane proteins. As an illustrative example of an analytically challenging large protein complex, the proteomic detection and characterization of the Ca2+-ATPase of the sarcoplasmic reticulum is discussed. The biological role of this large protein complex during normal muscle functioning, in the context of fiber type diversity and in relation to mechanisms of physiological adaptations and pathophysiological abnormalities is evaluated from a proteomics perspective. EXPERT OPINION: Mass spectrometry-based muscle proteomics has decisively advanced the field of basic and applied myology. Although it is technically challenging to study membrane proteins, innovations in protein separation methodology in combination with sensitive mass spectrometry and improved systems bioinformatics has allowed the detailed proteomic detection and characterization of skeletal muscle membrane protein complexes, such as Ca2+-pump proteins of the sarcoplasmic reticulum.


Assuntos
Proteômica , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático , Humanos , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/genética , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/química , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/metabolismo , Músculo Esquelético/metabolismo , Retículo Sarcoplasmático , Proteínas de Membrana/metabolismo , Cálcio/química , Cálcio/metabolismo
12.
Cancers (Basel) ; 15(15)2023 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-37568580

RESUMO

Multiple myeloma (MM) is an incurable haematological malignancy of plasma cells in the bone marrow. In rare cases, an aggressive form of MM called extramedullary multiple myeloma (EMM) develops, where myeloma cells enter the bloodstream and colonise distal organs or soft tissues. This variant is associated with refractoriness to conventional therapies and a short overall survival. The molecular mechanisms associated with EMM are not yet fully understood. Here, we analysed the proteome of bone marrow mononuclear cells and blood plasma from eight patients (one serial sample) with EMM and eight patients without extramedullary spread. The patients with EMM had a significantly reduced overall survival with a median survival of 19 months. Label-free mass spectrometry revealed 225 proteins with a significant differential abundance between bone marrow mononuclear cells (BMNCs) isolated from patients with MM and EMM. This plasma proteomics analysis identified 22 proteins with a significant differential abundance. Three proteins, namely vascular cell adhesion molecule 1 (VCAM1), pigment epithelium derived factor (PEDF), and hepatocyte growth factor activator (HGFA), were verified as the promising markers of EMM, with the combined protein panel showing excellent accuracy in distinguishing EMM patients from MM patients. Metabolomic analysis revealed a distinct metabolite signature in EMM patient plasma compared to MM patient plasma. The results provide much needed insight into the phenotypic profile of EMM and in identifying promising plasma-derived markers of EMM that may inform novel drug development strategies.

13.
Eur J Transl Myol ; 33(3)2023 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-37565261

RESUMO

The wobbler mouse is a widely used model system of amyotrophic lateral sclerosis and exhibits progressive neurodegeneration and neuroinflammation in association with skeletal muscle wasting. This study has used wobbler brain preparations for the systematic and mass spectrometric determination of proteome-wide changes. The proteomic characterization of total protein extracts from wobbler specimens was carried out with the help of an Orbitrap mass spectrometer and revealed elevated levels of glia cell marker proteins, i.e., glial fibrillary acidic protein and the actin-binding protein coronin. In contrast, the abundance of the actin-binding protein neurabin and the scaffolding protein named piccolo of the presynaptic cytomatrix were shown to be reduced. The increased abundance of glial fibrillary acidic protein, which is frequently used in neuropathological studies as a marker protein of glial scar formation, was confirmed by immunoblotting. In analogy, the proteomic profiling of the brain from another established murine model of motor neuron disease, the SOD1mouse, also showed increased levels of this intermediate filament protein. This suggests that neurodegenerative processes are associated with astrogliosis in both the wobbler and SOD1 brain.

14.
Eur J Transl Myol ; 33(3)2023 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-37545360

RESUMO

Neuromuscular diseases with primary muscle wasting symptoms may also display multi-systemic changes in the body and exhibit secondary pathophysiological alterations in various non-muscle tissues. In some cases, this includes proteome-wide alterations and/or adaptations in the central nervous system. Thus, in order to provide an improved bioanalytical basis for the comprehensive evaluation of animal models that are routinely used in muscle research, this report describes the mass spectrometry-based proteomic characterization of the mouse brain. Crude tissue extracts were examined by bottom-up proteomics and detected 4558 distinct protein species. The detailed analysis of the brain proteome revealed the presence of abundant cellular proteoforms in the neuronal cytoskeleton, as well as various brain region enriched proteins, including markers of the cerebral cortex, cerebellum, hippocampus and the olfactory bulb. Neuroproteomic markers of specific cell types in the brain were identified in association with various types of neurons and glia cells. Markers of subcellular structures were established for the plasmalemma, nucleus, endoplasmic reticulum, mitochondria and other crucial organelles, as well as synaptic components that are involved in presynaptic vesicle docking, neurotransmitter release and synapse remodelling.

15.
Biomolecules ; 13(7)2023 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-37509144

RESUMO

The progressive degeneration of the skeletal musculature in Duchenne muscular dystrophy is accompanied by reactive myofibrosis, fat substitution, and chronic inflammation. Fibrotic changes and reduced tissue elasticity correlate with the loss in motor function in this X-chromosomal disorder. Thus, although dystrophinopathies are due to primary abnormalities in the DMD gene causing the almost-complete absence of the cytoskeletal Dp427-M isoform of dystrophin in voluntary muscles, the excessive accumulation of extracellular matrix proteins presents a key histopathological hallmark of muscular dystrophy. Animal model research has been instrumental in the characterization of dystrophic muscles and has contributed to a better understanding of the complex pathogenesis of dystrophinopathies, the discovery of new disease biomarkers, and the testing of novel therapeutic strategies. In this article, we review how mass-spectrometry-based proteomics can be used to study changes in key components of the endomysium, perimysium, and epimysium, such as collagens, proteoglycans, matricellular proteins, and adhesion receptors. The mdx-4cv mouse diaphragm displays severe myofibrosis, making it an ideal model system for large-scale surveys of systematic alterations in the matrisome of dystrophic fibers. Novel biomarkers of myofibrosis can now be tested for their appropriateness in the preclinical and clinical setting as diagnostic, pharmacodynamic, prognostic, and/or therapeutic monitoring indicators.


Assuntos
Diafragma , Distrofia Muscular de Duchenne , Animais , Camundongos , Camundongos Endogâmicos mdx , Diafragma/metabolismo , Diafragma/patologia , Proteômica , Distrofia Muscular de Duchenne/patologia , Músculo Esquelético/metabolismo , Matriz Extracelular/metabolismo , Proteínas da Matriz Extracelular/genética , Proteínas da Matriz Extracelular/metabolismo , Biomarcadores/metabolismo
16.
Methods Mol Biol ; 2645: 277-287, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37202627

RESUMO

Various types of cancer cells enrich or condition the medium that they are cultured in by secreting or shedding proteins and small molecules. These secreted or shed factors are involved in key biological processes, including cellular communication, proliferation, and migration, and are represented by protein families, including cytokines, growth factors, and enzymes. The rapid development of high-resolution mass spectrometry and shotgun strategies for proteome analysis facilitates the identification of these factors in biological models and elucidation of their potential roles in pathophysiology. Hence, the following protocol provides details on how to prepare proteins present in conditioned media for mass spectrometry analysis.


Assuntos
Neoplasias , Secretoma , Humanos , Linhagem Celular , Proteoma/metabolismo , Biomarcadores/metabolismo , Biomarcadores Tumorais/metabolismo , Meios de Cultivo Condicionados/análise
17.
Int J Cancer ; 152(12): 2639-2654, 2023 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-36733230

RESUMO

Ablative radiotherapy is a highly efficient treatment modality for patients with metastatic prostate cancer (PCa). However, a subset of patients does not respond. Currently, this subgroup with bad prognosis cannot be identified before disease progression. We hypothesize that markers indicative of radioresistance, stemness and/or bone tropism may have a prognostic potential to identify patients profiting from metastases-directed radiotherapy. Therefore, circulating tumor cells (CTCs) were analyzed in patients with metastatic PCa (n = 24) during radiotherapy with CellSearch, multicolor flow cytometry and imaging cytometry. Analysis of copy-number alteration indicates a polyclonal CTC population that changes after radiotherapy. CTCs were found in 8 out of 24 patients (33.3%) and were associated with a shorter time to biochemical progression after radiotherapy. Whereas the total CTC count dropped after radiotherapy, a chemokine receptor CXCR4-expressing subpopulation representing 28.6% of the total CTC population remained stable up to 3 months. At once, we observed higher chemokine CCL2 plasma concentrations and proinflammatory monocytes. Additional functional analyses demonstrated key roles of CXCR4 and CCL2 for cellular radiosensitivity, tumorigenicity and stem-like potential in vitro and in vivo. Moreover, a high CXCR4 and CCL2 expression was found in bone metastasis biopsies of PCa patients. In summary, panCK+ CXCR4+ CTCs may have a prognostic potential in patients with metastatic PCa treated with metastasis-directed radiotherapy.


Assuntos
Neoplasias Ósseas , Células Neoplásicas Circulantes , Neoplasias da Próstata , Masculino , Humanos , Células Neoplásicas Circulantes/patologia , Biomarcadores Tumorais , Neoplasias da Próstata/radioterapia , Neoplasias da Próstata/patologia , Prognóstico , Neoplasias Ósseas/patologia , Receptores CXCR4
18.
Int J Mol Sci ; 24(3)2023 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-36768735

RESUMO

The progressive loss of skeletal muscle mass and concomitant reduction in contractile strength plays a central role in frailty syndrome. Age-related neuronal impairments are closely associated with sarcopenia in the elderly, which is characterized by severe muscular atrophy that can considerably lessen the overall quality of life at old age. Mass-spectrometry-based proteomic surveys of senescent human skeletal muscles, as well as animal models of sarcopenia, have decisively improved our understanding of the molecular and cellular consequences of muscular atrophy and associated fiber-type shifting during aging. This review outlines the mass spectrometric identification of proteome-wide changes in atrophying skeletal muscles, with a focus on contractile proteins as potential markers of changes in fiber-type distribution patterns. The observed trend of fast-to-slow transitions in individual human skeletal muscles during the aging process is most likely linked to a preferential susceptibility of fast-twitching muscle fibers to muscular atrophy. Studies with senescent animal models, including mostly aged rodent skeletal muscles, have confirmed fiber-type shifting. The proteomic analysis of fast versus slow isoforms of key contractile proteins, such as myosin heavy chains, myosin light chains, actins, troponins and tropomyosins, suggests them as suitable bioanalytical tools of fiber-type transitions during aging.


Assuntos
Sarcopenia , Idoso , Animais , Humanos , Sarcopenia/metabolismo , Proteômica , Idoso Fragilizado , Qualidade de Vida , Músculo Esquelético/metabolismo , Troponina/metabolismo , Cadeias Pesadas de Miosina/metabolismo , Fibras Musculares Esqueléticas/metabolismo
19.
Methods Mol Biol ; 2596: 39-50, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36378429

RESUMO

Two-dimensional difference gel electrophoresis (2D-DIGE) is a high-resolution protein separation technique, with the excellent dynamic range obtained by fluorescent tag labeling of protein samples. Scanned images of 2D-DIGE gels show thousands of protein spots, each spot representing a single or a group of protein isoforms. By using commercially available software, each protein spot is defined by an outline, which is digitized and correlated with the quantity of proteins present in each spot. Software packages include DeCyder, SameSpots, and Dymension 3. In addition, proteins of interest can be excised from post-stained gels and identified with conventional mass spectrometric techniques. High-throughput mass spectrometry is performed using sophisticated instrumentation, including matrix-assisted laser desorption ionization time-of-flight (MALDI-TOF), MALDI-TOF/TOF, and liquid chromatography tandem mass spectrometry (LC-MS/MS). Tandem MS (MALDI-TOF/TOF or LC-MS/MS) analyzes fragmented peptides, resulting in amino acid sequence information, which is especially useful when protein spots are low abundant or where a mixture of proteins is present.


Assuntos
Software , Espectrometria de Massas em Tandem , Eletroforese em Gel Bidimensional/métodos , Cromatografia Líquida , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Isoformas de Proteínas
20.
Methods Mol Biol ; 2596: 83-96, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36378432

RESUMO

Ubiquitination is a post-translational modification, in which a small regulatory protein (~8.6 kDa) is tagged as a single moiety or as a chain to target proteins. Ubiquitination is the most versatile cellular regulatory mechanism, essential to the physiological and pathophysiological cellular events that regulate protein turnover, gene transcription, cell cycle progression, DNA repair, apoptosis, viral budding, and receptor-mediated endocytosis. Changes and abnormalities within the ubiquitination process can result in a plethora of diseases, including various cancers. The ubiquitination process is tightly controlled in a stepwise manner by four enzymes: E1 ubiquitin-activating enzymes, E2 ubiquitin-conjugating enzymes, E3 ubiquitin-ligating enzymes, and deubiquitinating proteases. Using fluorescence two-dimensional difference gel electrophoresis (2D-DIGE) to detect and quantitate cellular proteins associated with the ubiquitination process will facilitate the evaluation of this post-translational modification associated with the pathophysiological phenotype.


Assuntos
Enzimas de Conjugação de Ubiquitina , Ubiquitina , Eletroforese em Gel Diferencial Bidimensional , Enzimas de Conjugação de Ubiquitina/metabolismo , Ubiquitinação , Ubiquitina/metabolismo , Processamento de Proteína Pós-Traducional , Ubiquitina-Proteína Ligases/metabolismo , Fatores de Transcrição/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA