Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
2.
Genome Med ; 15(1): 73, 2023 09 18.
Artigo em Inglês | MEDLINE | ID: mdl-37723491

RESUMO

BACKGROUND: Dilated cardiomyopathy (DCM) is a life-threatening heart disease and a common cause of heart failure due to systolic dysfunction and subsequent left or biventricular dilatation. A significant number of cases have a genetic etiology; however, as a complex disease, the exact genetic risk factors are largely unknown, and many patients remain without a molecular diagnosis. METHODS: We performed GWAS followed by whole-genome, transcriptome, and immunohistochemical analyses in a spontaneously occurring canine model of DCM. Canine gene discovery was followed up in three human DCM cohorts. RESULTS: Our results revealed two independent additive loci associated with the typical DCM phenotype comprising left ventricular systolic dysfunction and dilatation. We highlight two novel candidate genes, RNF207 and PRKAA2, known for their involvement in cardiac action potentials, energy homeostasis, and morphology. We further illustrate the distinct genetic etiologies underlying the typical DCM phenotype and ventricular premature contractions. Finally, we followed up on the canine discoveries in human DCM patients and discovered candidate variants in our two novel genes. CONCLUSIONS: Collectively, our study yields insight into the molecular pathophysiology of DCM and provides a large animal model for preclinical studies.


Assuntos
Cardiomiopatia Dilatada , Humanos , Animais , Cães , Cardiomiopatia Dilatada/genética , Cardiomiopatia Dilatada/veterinária , Homeostase , Modelos Animais , Fenótipo , Fatores de Risco
3.
Genes (Basel) ; 14(8)2023 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-37628692

RESUMO

An 8-month-old female Lagotto Romagnolo dog was presented for a 1-month history of an initial severe reluctance to move, rapidly progressing to a marked stiff gait and progressive muscular weakness and evolving to tetraparesis, which persuaded the owner to request euthanasia. A primary muscle pathology was supported by necropsy and histopathological findings. Macroscopically, the muscles were moderately atrophic, except for the diaphragm and the neck muscles, which were markedly thickened. Histologically, all the skeletal muscles examined showed atrophy, hypertrophy, necrosis with calcification of the fibers, and mild fibrosis and inflammation. On immunohistochemistry, all three dystrophin domains and sarcoglycan proteins were absent. On Western blot analysis, no band was present for delta sarcoglycan. We sequenced the genome of the affected dog and compared the data to more than 900 control genomes of different dog breeds. Genetic analysis revealed a homozygous private protein-changing variant in the SGCD gene encoding delta- sarcoglycan in the affected dog. The variant was predicted to induce a SGCD:p.(Leu242Pro) change in the protein. In silico tools predicted the change to be deleterious. Other 770 Lagotto Romagnolo dogs were genotyped for the variant and all found to be homozygous wild type. Based on current knowledge of gene function in other mammalian species, including humans, hamsters, and dogs, we propose the SGCD missense variant as the causative variant of the observed form of muscular dystrophy in the index case. The absence of the variant allele in the Lagotto Romagnolo breeding population indicates a rare allele that has appeared recently.


Assuntos
Distrofia Muscular do Cíngulo dos Membros , Sarcoglicanas , Cricetinae , Humanos , Cães , Feminino , Animais , Lactente , Sarcoglicanas/genética , Músculo Esquelético , Alelos , Atrofia , Mamíferos
4.
Genome Biol ; 24(1): 187, 2023 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-37582787

RESUMO

BACKGROUND: The international Dog10K project aims to sequence and analyze several thousand canine genomes. Incorporating 20 × data from 1987 individuals, including 1611 dogs (321 breeds), 309 village dogs, 63 wolves, and four coyotes, we identify genomic variation across the canid family, setting the stage for detailed studies of domestication, behavior, morphology, disease susceptibility, and genome architecture and function. RESULTS: We report the analysis of > 48 M single-nucleotide, indel, and structural variants spanning the autosomes, X chromosome, and mitochondria. We discover more than 75% of variation for 239 sampled breeds. Allele sharing analysis indicates that 94.9% of breeds form monophyletic clusters and 25 major clades. German Shepherd Dogs and related breeds show the highest allele sharing with independent breeds from multiple clades. On average, each breed dog differs from the UU_Cfam_GSD_1.0 reference at 26,960 deletions and 14,034 insertions greater than 50 bp, with wolves having 14% more variants. Discovered variants include retrogene insertions from 926 parent genes. To aid functional prioritization, single-nucleotide variants were annotated with SnpEff and Zoonomia phyloP constraint scores. Constrained positions were negatively correlated with allele frequency. Finally, the utility of the Dog10K data as an imputation reference panel is assessed, generating high-confidence calls across varied genotyping platform densities including for breeds not included in the Dog10K collection. CONCLUSIONS: We have developed a dense dataset of 1987 sequenced canids that reveals patterns of allele sharing, identifies likely functional variants, informs breed structure, and enables accurate imputation. Dog10K data are publicly available.


Assuntos
Lobos , Cães , Animais , Lobos/genética , Mapeamento Cromossômico , Alelos , Polimorfismo de Nucleotídeo Único , Nucleotídeos , Demografia
5.
Genes (Basel) ; 14(6)2023 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-37372390

RESUMO

A female Lagotto Romagnolo dog with polycystic kidney disease (PKD) and her progeny, including PKD-affected offspring, were studied. All affected dogs appeared clinically inconspicuous, while sonography revealed the presence of renal cysts. The PKD-affected index female was used for breeding and produced two litters with six affected offspring of both sexes and seven unaffected offspring. The pedigrees suggested an autosomal dominant mode of inheritance of the trait. A trio whole genome sequencing analysis of the index female and her unaffected parents identified a de novo heterozygous nonsense variant in the coding region of the PKD1 gene. This variant, NM_001006650.1:c.7195G>T, is predicted to truncate 44% of the open reading frame of the wild-type PKD1 protein, NP_001006651.1:p.(Glu2399*). The finding of a de novo variant in an excellent functional candidate gene strongly suggests that the PKD1 nonsense variant caused the observed phenotype in the affected dogs. Perfect co-segregation of the mutant allele with the PKD phenotype in two litters supports the hypothesized causality. To the best of our knowledge, this is the second description of a PKD1-related canine form of autosomal dominant PKD that may serve as an animal model for similar hepatorenal fibrocystic disorders in humans.


Assuntos
Hereditariedade , Rim Policístico Autossômico Dominante , Humanos , Masculino , Feminino , Animais , Cães , Rim Policístico Autossômico Dominante/genética , Linhagem , Fenótipo , Heterozigoto
6.
Anim Genet ; 54(5): 632-636, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37334487

RESUMO

Cerebellar hypoplasia is a heterogeneous neurological condition in which the cerebellum is smaller than usual or not completely developed. The condition can have genetic origins, with Mendelian-effect mutations described in several mammalian species. Here, we describe a genetic investigation of cerebellar hypoplasia in White Swiss Shepherd dogs, where two affected puppies were identified from a litter with a recent common ancestor on both sides of their pedigree. Whole genome sequencing was conducted for 10 dogs in this family, and filtering of these data based on a recessive transmission hypothesis highlighted five protein-altering candidate variants - including a frameshift-deletion of the Reelin (RELN) gene (p.Val947*). Given the status of RELN as a gene responsible for cerebellar hypoplasia in humans, sheep and mice, these data strongly suggest the loss-of-function variant as underlying these effects. This variant has not been found in other dog breeds nor in a cohort of European White Swiss Shepherds, suggesting a recent mutation event. This finding will support the genotyping of a more diverse sample of dogs, and should aid future management of the harmful allele through optimised mating schemes.


Assuntos
Doenças do Cão , Proteína Reelina , Animais , Cães , Humanos , Cerebelo/anormalidades , Doenças do Cão/genética , Mutação da Fase de Leitura , Mamíferos , Mutação , Deleção de Sequência , Suíça , Proteína Reelina/genética
7.
Genes (Basel) ; 13(2)2022 02 10.
Artigo em Inglês | MEDLINE | ID: mdl-35205370

RESUMO

Two FGF4 retrogenes (FGF4L1 on chromosome 18 and FGF4L2 on chromosome 12) have been identified to cause dwarfism across many dog breeds. Some breeds are nearly homozygous for both retrogenes (e.g., Dachshunds) and others are homozygous for just one (e.g., Beagles and Scottish Terriers). Since most breeds do not segregate both of these retrogenes, it is challenging to evaluate their individual effects on long bone length and body size. We identified two dog breeds selected for hunting ability, the Alpine Dachsbracke and the Schweizer Niederlaufhund, that segregate both of these retrogenes. Using individual measurements of height at the shoulder, back length, head width, thorax depth and width, and thoracic limb measurements, we evaluated the combined effects of FGF4 retrogenes within these breeds. We applied multivariable linear regression analysis to determine the effects of retrogene copy numbers on the measurements. Copy numbers of both retrogenes had significant effects reducing height at the shoulders and antebrachial length, with FGF4L1 having a much greater effect than FGF4L2. FGF4L1 alone influenced the degree of carpal valgus and FGF4L2 alone increased head width. Neither retrogene had an effect on thorax width or depth. Selectively breeding dogs with FGF4L1 and without FGF4L2 would likely lead to a reduction in the FGF4L2-related risk of intervertebral disc herniation while maintaining the reduction in leg length resulting from FGF4L1.


Assuntos
Deslocamento do Disco Intervertebral , Animais , Cães , Deslocamento do Disco Intervertebral/genética
8.
Genes (Basel) ; 12(12)2021 12 09.
Artigo em Inglês | MEDLINE | ID: mdl-34946912

RESUMO

Dogs represent a unique spontaneous cancer model. Osteosarcoma (OSA) is the most common primary bone tumor in dogs (OMIA 001441-9615), and strongly resembles human forms of OSA. Several large- to giant-sized dog breeds, including the Leonberger, have a greatly increased risk of developing OSA. We performed genome-wide association analysis with high-density imputed SNP genotype data from 273 Leonberger cases with a median age of 8.1 [3.1-13.5] years and 365 controls older than eight years. This analysis revealed significant associations at the CDKN2A/B gene locus on canine chromosome 11, mirroring previous findings in other dog breeds, such as the greyhound, that also show an elevated risk for OSA. Heritability (h2SNP) was determined to be 20.6% (SE = 0.08; p-value = 5.7 × 10-4) based on a breed prevalence of 20%. The 2563 SNPs across the genome accounted for nearly all the h2SNP of OSA, with 2183 SNPs of small effect, 316 SNPs of moderate effect, and 64 SNPs of large effect. As with many other cancers it is likely that regulatory, non-coding variants underlie the increased risk for cancer development. Our findings confirm a complex genetic basis of OSA, moderate heritability, and the crucial role of the CDKN2A/B locus leading to strong cancer predisposition in dogs. It will ultimately be interesting to study and compare the known genetic loci associated with canine OSA in human OSA.


Assuntos
Neoplasias Ósseas/patologia , Inibidor de Quinase Dependente de Ciclina p15/genética , Inibidor p16 de Quinase Dependente de Ciclina/genética , Doenças do Cão/patologia , Loci Gênicos , Osteossarcoma/patologia , Polimorfismo de Nucleotídeo Único , Animais , Neoplasias Ósseas/genética , Doenças do Cão/genética , Cães , Predisposição Genética para Doença , Genoma , Estudo de Associação Genômica Ampla , Osteossarcoma/genética
9.
Genes (Basel) ; 11(10)2020 10 16.
Artigo em Inglês | MEDLINE | ID: mdl-33081289

RESUMO

Sporadic occurrence of juvenile-onset necrotizing encephalopathy (SNE) has been previously reported in Yorkshire terriers. However, so far, no causative genetic variant has been found for this breed-specific form of suspected mitochondrial encephalomyopathy. Affected dogs showed gait abnormalities, central visual defects, and/or seizures. Histopathological analysis revealed the presence of major characteristics of human Leigh syndrome and SNE in Alaskan huskies. The aim of this study was to characterize the genetic etiology of SNE-affected purebred Yorkshire terriers. After SNP genotyping and subsequent homozygosity mapping, we identified a single loss-of-function variant by whole-genome sequencing in the canine SLC19A3 gene situated in a 1.7 Mb region of homozygosity on chromosome 25. All ten cases were homozygous carriers of a mutant allele, an indel variant in exon 2, that is predicted to lead to a frameshift and to truncate about 86% of the wild type coding sequence. This study reports a most likely pathogenic variant in SLC19A3 causing a form of SNE in Yorkshire terriers and enables selection against this fatal neurodegenerative recessive disorder. This is the second report of a pathogenic alteration of the SLC19A3 gene in dogs with SNE.


Assuntos
Doença de Leigh/genética , Mutação com Perda de Função , Proteínas de Membrana Transportadoras/genética , Animais , Cruzamento , Cães , Feminino , Doença de Leigh/patologia , Masculino , Linhagem , Sequenciamento Completo do Genoma
10.
PLoS One ; 15(3): e0225901, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32119674

RESUMO

Hereditary nasal parakeratosis (HNPK) is an inherited disorder described in Labrador Retrievers and Greyhounds. It has been associated with breed-specific variants in the SUV39H2 gene encoding a histone 3 methyltransferase involved in epigenetic silencing. Formalin-fixed biopsies of the nasal planum of Labrador Retrievers were screened by immunofluorescence microscopy for the presence and distribution of epidermal proliferation and differentiation markers. Gene expression of these markers was further analysed using RNA sequencing (RNA-seq) and ultrastructural epidermal differences were investigated by electron microscopy. Differentiation of the nasal planum in the basal and suprabasal epidermal layers of HNPK-affected dogs (n = 6) was similar compared to control dogs (n = 6). In the upper epidermal layers, clear modifications were noticed. Loricrin protein was absent in HNPK-affected nasal planum sections in contrast to sections of the same location of control dogs. However, loricrin was present in the epidermis of paw pads and abdominal skin from HNPK dogs and healthy control dogs. The patterns of keratins K1, K10 and K14, were not markedly altered in the nasal planum of HNPK-affected dogs while the expression of the terminal differentiation marker involucrin appeared less regular. Based on RNA-seq, LOR and IVL expression levels were significantly decreased, while KRT1, KRT10 and KRT14 levels were up-regulated (log2fold-changes of 2.67, 3.19 and 1.71, respectively) in HNPK-affected nasal planum (n = 3) compared to control dogs (n = 3). Electron microscopical analysis revealed structural alterations in keratinocytes and stratum corneum, and disrupted keratinocyte adhesions and distended intercellular spaces in lesional samples (n = 3) compared to a sample of a healthy control dog (n = 1). Our findings demonstrate aberrant keratinocyte terminal differentiation of the nasal planum of HNPK-affected Labrador Retrievers and provide insights into biological consequences of this inactive SUV39H2 gene variant.


Assuntos
Antígenos de Diferenciação , Doenças do Cão , Doenças Genéticas Inatas , Doenças Nasais , Paraceratose , Animais , Cães , Feminino , Masculino , Antígenos de Diferenciação/genética , Antígenos de Diferenciação/metabolismo , Doenças do Cão/genética , Doenças do Cão/metabolismo , Doenças do Cão/patologia , Doenças Genéticas Inatas/genética , Doenças Genéticas Inatas/metabolismo , Doenças Genéticas Inatas/patologia , Doenças Genéticas Inatas/veterinária , Queratinócitos/metabolismo , Queratinócitos/patologia , Doenças Nasais/genética , Doenças Nasais/metabolismo , Doenças Nasais/patologia , Doenças Nasais/veterinária , Paraceratose/genética , Paraceratose/metabolismo , Paraceratose/patologia , Paraceratose/veterinária
11.
PLoS One ; 14(9): e0220625, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31484196

RESUMO

Inherited bleeding disorders including abnormalities of platelet number and function rarely occur in a variety of dog breeds, but are probably underdiagnosed. Genetically characterized canine forms of platelet disorders provide valuable large animal models for understanding similar platelet disorders in people. Breed-specific disease associated genetic variants in only eight different genes are known to cause intrinsic platelet disorders in dogs. However, the causative genetic variant in many dog breeds has until now remained unknown. Four cases of a mild to severe bleeding disorder in Cocker Spaniel dogs are herein presented. The affected dogs showed a platelet adhesion defect characterized by macrothrombocytopenia with variable platelet counts resembling human Bernard-Soulier syndrome (BSS). Furthermore, the lack of functional GPIb-IX-V was demonstrated by immunocytochemistry. Whole genome sequencing of one affected dog and visual inspection of the candidate genes identified a deletion in the glycoprotein IX platelet (GP9) gene. The GP9 gene encodes a subunit of a platelet surface membrane glycoprotein complex; this functions as a receptor for von Willebrand factor, which initiates the maintenance of hemostasis after injury. Variants in human GP9 are associated with Bernard-Soulier syndrome, type C. The deletion spanned 2460 bp, and included a significant part of the single coding exon of the canine GP9 gene on dog chromosome 20. The variant results in a frameshift and premature stop codon which is predicted to truncate almost two-thirds of the encoded protein. PCR-based genotyping confirmed recessive inheritance. The homozygous variant genotype seen in affected dogs did not occur in 98 control Cocker Spaniels. Thus, it was concluded that the structural variant identified in the GP9 gene was most likely causative for the BSS-phenotype in the dogs examined. These findings provide the first large animal GP9 model for this group of inherited platelet disorders and greatly facilitate the diagnosis and identification of affected and/or normal carriers in Cocker Spaniels.


Assuntos
Síndrome de Bernard-Soulier/veterinária , Doenças do Cão/diagnóstico , Doenças do Cão/genética , Estudos de Associação Genética , Predisposição Genética para Doença , Complexo Glicoproteico GPIb-IX de Plaquetas/genética , Deleção de Sequência , Animais , Cães , Estudos de Associação Genética/métodos , Masculino , Linhagem
12.
PLoS Genet ; 15(5): e1008102, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-31095560

RESUMO

In flat-faced dog breeds, air resistance caused by skull conformation is believed to be a major determinant of Brachycephalic Obstructive Airway Syndrome (BOAS). The clinical presentation of BOAS is heterogeneous, suggesting determinants independent of skull conformation contribute to airway disease. Norwich Terriers, a mesocephalic breed, are predisposed to Upper Airway Syndrome (UAS), a disease whose pathological features overlap with BOAS. Our health screening clinic examined and scored the airways of 401 Norwich terriers by laryngoscopy. Genome-wide association analyses of UAS-related pathologies revealed a genetic association on canine chromosome 13 (rs9043975, p = 7.79x10-16). Whole genome resequencing was used to identify causal variant(s) within a 414 kb critical interval. This approach highlighted an error in the CanFam3.1 dog assembly, which when resolved, led to the discovery of a c.2786G>A missense variant in exon 20 of the positional candidate gene, ADAM metallopeptidase with thrombospondin type 1 motif 3 (ADAMTS3). In addition to segregating with UAS amongst Norwich Terriers, the ADAMTS3 c.2786G>A risk allele frequency was enriched among the BOAS-susceptible French and (English) Bulldogs. Previous studies indicate that ADAMTS3 loss of function results in lymphoedema. Our results suggest a new paradigm in the understanding of canine upper airway disease aetiology: airway oedema caused by disruption of ADAMTS3 predisposes dogs to respiratory obstruction. These findings will enhance breeding practices and could refine the prognostics of surgical interventions that are often used to treat airway obstruction.


Assuntos
Proteínas ADAMTS/genética , Doenças do Cão/genética , Mutação de Sentido Incorreto , Doença Pulmonar Obstrutiva Crônica/genética , Alelos , Animais , Cromossomos de Mamíferos/química , Suscetibilidade a Doenças , Doenças do Cão/diagnóstico por imagem , Doenças do Cão/fisiopatologia , Cães , Feminino , Expressão Gênica , Frequência do Gene , Estudo de Associação Genômica Ampla , Laringoscopia , Masculino , Doença Pulmonar Obstrutiva Crônica/diagnóstico por imagem , Doença Pulmonar Obstrutiva Crônica/fisiopatologia , Sistema Respiratório/anatomia & histologia , Sistema Respiratório/diagnóstico por imagem , Sistema Respiratório/fisiopatologia , Crânio/anatomia & histologia , Sequenciamento Completo do Genoma
13.
BMC Vet Res ; 14(1): 161, 2018 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-29769086

RESUMO

BACKGROUND: Despite the importance of inflammation during the pathogenesis of cranial cruciate ligament disease (CCLD) in dogs and despite the latest knowledge suggesting a significant role of adipose tissue in osteoarthritis, the infrapatellar fat pad (IFP) was up to now mostly disregarded in veterinary investigations. In the present study, the inflammatory activity of the IFP, the main adipose structure within the stifle joint, was thoroughly investigated to evaluate its potential impact in the pathogenesis of this common disease of our canine companions. Samples of IFP, subcutaneous adipose tissue (ScAT) of the thigh and synovial fluid in both diseased (n = 36) and healthy control (n = 23) dogs were tested for their immune cell composition but also for interleukins (IL-1ß, IL-6, IL-8, IL-10), degradative enzymes (MMP-1, MMP-3, MMP-13, TIMP-2, iNOS) and adipokines (leptin and adiponectin). Characterization of the immune cell composition was ascertained by fluorescence activated cell sorting. Gene expression and protein release of the inflammatory markers was determined by real RT-qPCR and ELISA. RESULTS: IFPs of dogs with CCLD had a significantly increased immune cell count with T cells (CD3) as the most abundant immune cells. T cells and macrophages (CD14) were significantly increased compared to healthy controls or corresponding ScAT. In addition, IFPs of dogs with CCLD demonstrated a significant increase on gene as well as protein level of multiple inflammatory indicators (IL-1ß, IL-6, MMP-1, MMP-13) compared to the other tissues. TNFα was only increased on gene expression. Adipokine analysis showed higher secretion of adiponectin and lower leptin secretion in IFP from dogs with CCLD than from controls. In the synovial fluid from dogs with CCLD concentrations of IL-1ß, MMP-1, MMP-13 as well as leptin were significantly increased compared to the synovial fluid from healthy control dogs. CONCLUSIONS: The present study indicates that the IFP is a potential contributory factor in the pathogenesis of CCLD, due to its inflammatory phenotype and the proximity within the stifle joint. To determine the extent of this possible inter-relationship, further studies need to be undertaken.


Assuntos
Tecido Adiposo/patologia , Ligamento Cruzado Anterior/patologia , Doenças do Tecido Conjuntivo/veterinária , Inflamação/veterinária , Patela/patologia , Adipocinas/metabolismo , Animais , Ligamento Cruzado Anterior/enzimologia , Ligamento Cruzado Anterior/imunologia , Doenças do Tecido Conjuntivo/enzimologia , Doenças do Tecido Conjuntivo/imunologia , Doenças do Tecido Conjuntivo/patologia , Citocinas/metabolismo , Cães , Feminino , Inflamação/enzimologia , Inflamação/imunologia , Inflamação/patologia , Masculino , Metaloproteinases da Matriz/metabolismo , Joelho de Quadrúpedes/patologia , Líquido Sinovial/imunologia , Transcriptoma
14.
Curr Biol ; 27(11): 1573-1584.e6, 2017 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-28552356

RESUMO

In morphological terms, "form" is used to describe an object's shape and size. In dogs, facial form is stunningly diverse. Facial retrusion, the proximodistal shortening of the snout and widening of the hard palate is common to brachycephalic dogs and is a welfare concern, as the incidence of respiratory distress and ocular trauma observed in this class of dogs is highly correlated with their skull form. Progress to identify the molecular underpinnings of facial retrusion is limited to association of a missense mutation in BMP3 among small brachycephalic dogs. Here, we used morphometrics of skull isosurfaces derived from 374 pedigree and mixed-breed dogs to dissect the genetics of skull form. Through deconvolution of facial forms, we identified quantitative trait loci that are responsible for canine facial shapes and sizes. Our novel insights include recognition that the FGF4 retrogene insertion, previously associated with appendicular chondrodysplasia, also reduces neurocranium size. Focusing on facial shape, we resolved a quantitative trait locus on canine chromosome 1 to a 188-kb critical interval that encompasses SMOC2. An intronic, transposable element within SMOC2 promotes the utilization of cryptic splice sites, causing its incorporation into transcripts, and drastically reduces SMOC2 gene expression in brachycephalic dogs. SMOC2 disruption affects the facial skeleton in a dose-dependent manner. The size effects of the associated SMOC2 haplotype are profound, accounting for 36% of facial length variation in the dogs we tested. Our data bring new focus to SMOC2 by highlighting its clinical implications in both human and veterinary medicine.


Assuntos
Proteínas de Ligação ao Cálcio/genética , Craniossinostoses/veterinária , Cães/genética , Splicing de RNA/genética , Retroelementos/genética , Pontos de Referência Anatômicos , Animais , Cruzamento/métodos , Craniossinostoses/diagnóstico por imagem , Craniossinostoses/genética , Face/anormalidades , Feminino , Fator 4 de Crescimento de Fibroblastos/genética , Estudo de Associação Genômica Ampla , Haplótipos/genética , Íntrons/genética , Masculino , Locos de Características Quantitativas/genética , Crânio/anormalidades , Crânio/diagnóstico por imagem , Suíça , Tomografia Computadorizada por Raios X , Reino Unido
15.
Tierarztl Prax Ausg K Kleintiere Heimtiere ; 44(6): 431-437, 2016 Dec 05.
Artigo em Inglês, Alemão | MEDLINE | ID: mdl-27778018

RESUMO

A female, 5-year-old American Staffordshire Terrier with severe progressive neurological deficits, particularly in terms of ataxia and keeping balance, was examined pathomorphologically and a genetic analysis was performed. In neurons of various localizations of the central nervous system an accumulation of a finely granular pale eosinophilic or light brown material was found. In addition, the cerebellum revealed marked degeneration and loss of Purkinje and inner granule cells. The accumulated PAS-positive, argyrophilic, autofluorescent material showed ultrastructurally a lamellar appearance suggestive of lipofuscin. Genetic analysis revealed the presence of a sequence variant in the ARSG gene encoding the lysosomal enzyme arylsulfatase G. This case report describes an adult-onset of a neuronal ceroid lipofuscinosis that shows similarities with a human disorder termed Kufs disease.


Assuntos
Doenças do Cão/diagnóstico , Lipofuscinoses Ceroides Neuronais/veterinária , Animais , Cerebelo/patologia , Doenças do Cão/genética , Doenças do Cão/patologia , Cães , Feminino , Humanos , Lipofuscinoses Ceroides Neuronais/diagnóstico , Lipofuscinoses Ceroides Neuronais/genética , Lipofuscinoses Ceroides Neuronais/patologia
16.
G3 (Bethesda) ; 6(9): 2963-70, 2016 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-27449517

RESUMO

We investigated a family of horses exhibiting irregular vertical stripes in their hair coat texture along the neck, back, hindquarters, and upper legs. This phenotype is termed "brindle" by horse breeders. We propose the term "brindle 1 (BR1)" for this specific form of brindle. In some BR1 horses, the stripes were also differentially pigmented. Pedigree analyses were suggestive of a monogenic X-chromosomal semidominant mode of inheritance. Haplotype analyses identified a 5 Mb candidate region on chromosome X. Whole genome sequencing of four BR1 and 60 nonbrindle horses identified 61 private variants in the critical interval, none of them located in an exon of an annotated gene. However, one of the private variants was close to an exon/intron boundary in intron 10 of the MBTPS2 gene encoding the membrane bound transcription factor peptidase, site 2 (c.1437+4T>C). Different coding variants in this gene lead to three related genodermatoses in human patients. We therefore analyzed MBTPS2 transcripts in skin, and identified an aberrant transcript in a BR1 horse, which lacked the entire exon 10 and parts of exon 11. The MBTPS2:c1437+4T>C variant showed perfect cosegregation with the brindle phenotype in the investigated family, and was absent from 457 control horses of diverse breeds. Altogether, our genetic data, and previous knowledge on MBTPS2 function in the skin, suggest that the identified MBTPS2 intronic variant leads to partial exon skipping, and causes the BR1 phenotype in horses.


Assuntos
Cabelo/metabolismo , Cavalos/genética , Metaloendopeptidases/genética , Splicing de RNA/genética , Animais , Éxons/genética , Cabelo/crescimento & desenvolvimento , Humanos , Íntrons/genética , Fenótipo , Dermatopatias/genética , Dermatopatias/patologia , Cromossomo X/genética
17.
G3 (Bethesda) ; 6(2): 255-62, 2015 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-26596647

RESUMO

We observed a hereditary phenotype in Alaskan Huskies that was characterized by polyneuropathy with ocular abnormalities and neuronal vacuolation (POANV). The affected dogs developed a progressive severe ataxia, which led to euthanasia between 8 and 16 months of age. The pedigrees were consistent with a monogenic autosomal recessive inheritance. We localized the causative genetic defect to a 4 Mb interval on chromosome 19 by a combined linkage and homozygosity mapping approach. Whole genome sequencing of one affected dog, an obligate carrier, and an unrelated control revealed a 218-bp SINE insertion into exon 7 of the RAB3GAP1 gene. The SINE insertion was perfectly associated with the disease phenotype in a cohort of 43 Alaskan Huskies, and it was absent from 541 control dogs of diverse other breeds. The SINE insertion induced aberrant splicing and led to a transcript with a greatly altered exon 7. RAB3GAP1 loss-of-function variants in humans cause Warburg Micro Syndrome 1 (WARBM1), which is characterized by additional developmental defects compared to canine POANV, whereas Rab3gap1-deficient mice have a much milder phenotype than either humans or dogs. Thus, the RAB3GAP1 mutant Alaskan Huskies provide an interesting intermediate phenotype that may help to better understand the function of RAB3GAP1 in development. Furthermore, the identification of the presumed causative genetic variant will enable genetic testing to avoid the nonintentional breeding of affected dogs.


Assuntos
Anormalidades Múltiplas/diagnóstico , Anormalidades Múltiplas/genética , Catarata/congênito , Córnea/anormalidades , Estudos de Associação Genética , Hipogonadismo/diagnóstico , Hipogonadismo/genética , Deficiência Intelectual/diagnóstico , Deficiência Intelectual/genética , Microcefalia/diagnóstico , Microcefalia/genética , Mutagênese Insercional , Atrofia Óptica/diagnóstico , Atrofia Óptica/genética , Fenótipo , Proteínas rab3 de Ligação ao GTP/genética , Animais , Cruzamento , Catarata/diagnóstico , Catarata/genética , Mapeamento Cromossômico , Cães , Éxons , Ligação Genética , Genoma , Genômica , Genótipo , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Imuno-Histoquímica , Imageamento por Ressonância Magnética , Polimorfismo de Nucleotídeo Único , Transcrição Gênica
18.
G3 (Bethesda) ; 5(12): 2611-7, 2015 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-26438297

RESUMO

A novel canine muscular dystrophy in Landseer dogs was observed. We had access to five affected dogs from two litters. The clinical signs started at a few weeks of age, and the severe progressive muscle weakness led to euthanasia between 5 and 15 months of age. The pedigrees of the affected dogs suggested a monogenic autosomal-recessive inheritance of the trait. Linkage and homozygosity mapping indicated two potential genome segments for the causative variant on chromosomes 10 and 31 harboring a total of 4.8 Mb of DNA or 0.2% of the canine genome. Using the Illumina sequencing technology, we obtained a whole-genome sequence from one affected Landseer. Variants were called with respect to the dog reference genome and compared with the genetic variants of 170 control dogs from other breeds. The affected Landseer dog was homozygous for a single, private nonsynonymous variant in the critical intervals, a nonsense variant in the COL6A1 gene (Chr31:39,303,964G>T; COL6A1:c.289G>T; p.E97*). Genotypes at this variant showed perfect concordance with the muscular dystrophy phenotype in all five cases and more than 1000 control dogs. Variants in the human COL6A1 gene cause Bethlem myopathy or Ullrich congenital muscular dystrophy. We therefore conclude that the identified canine COL6A1 variant is most likely causative for the observed muscular dystrophy in Landseer dogs. On the basis of the nature of the genetic variant in Landseer dogs and their severe clinical phenotype these dogs represent a model for human Ullrich congenital muscular dystrophy.


Assuntos
Códon sem Sentido , Colágeno Tipo VI/genética , Distrofias Musculares/genética , Animais , Mapeamento Cromossômico , Análise Mutacional de DNA , Modelos Animais de Doenças , Cães , Feminino , Estudos de Associação Genética , Ligação Genética , Genoma , Sequenciamento de Nucleotídeos em Larga Escala , Homozigoto , Masculino , Músculo Esquelético/metabolismo , Músculo Esquelético/patologia , Distrofias Musculares/diagnóstico
19.
PLoS One ; 10(8): e0136103, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26292153

RESUMO

Recurrent airway obstruction (RAO) is a common and potentially debilitating lower airway disease in horses, which shares many similarities with human asthma. In susceptible horses RAO exacerbation is caused by environmental allergens and irritants present in hay dust. The objective of this study was the identification of genes and pathways involved in the pathology of RAO by global transcriptome analyses in stimulated peripheral blood mononuclear cells (PBMCs). We performed RNA-seq on PBMCs derived from 40 RAO affected and 45 control horses belonging to three cohorts of Warmblood horses: two half-sib families and one group of unrelated horses. PBMCs were stimulated with hay dust extract, lipopolysaccharides, a recombinant parasite antigen, or left unstimulated. The total dataset consisted of 561 individual samples. We detected significant differences in the expression profiles between RAO and control horses. Differential expression (DE) was most marked upon stimulation with hay dust extract. An important novel finding was a strong upregulation of CXCL13 together with many genes involved in cell cycle regulation in stimulated samples from RAO affected horses, in addition to changes in the expression of several HIF-1 transcription factor target genes. The RAO condition alters systemic changes observed as differential expression profiles of PBMCs. Those changes also depended on the cohort and stimulation of the samples and were dominated by genes involved in immune cell trafficking, development, and cell cycle regulation. Our findings indicate an important role of CXCL13, likely macrophage or Th17 derived, and the cell cycle regulator CDC20 in the immune response in RAO.


Assuntos
Asma/veterinária , Ciclo Celular/fisiologia , Doenças dos Cavalos/fisiopatologia , Animais , Asma/fisiopatologia , Estudos de Casos e Controles , Quimiocina CXCL13/metabolismo , Feminino , Perfilação da Expressão Gênica/veterinária , Cavalos , Leucócitos Mononucleares/fisiologia , Masculino , Modelos Biológicos , Transcriptoma
20.
PLoS Genet ; 11(4): e1005169, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25875846

RESUMO

Inherited neurodegenerative disorders are debilitating diseases that occur across different species. We have performed clinical, pathological and genetic studies to characterize a novel canine neurodegenerative disease present in the Lagotto Romagnolo dog breed. Affected dogs suffer from progressive cerebellar ataxia, sometimes accompanied by episodic nystagmus and behavioral changes. Histological examination revealed unique pathological changes, including profound neuronal cytoplasmic vacuolization in the nervous system, as well as spheroid formation and cytoplasmic aggregation of vacuoles in secretory epithelial tissues and mesenchymal cells. Genetic analyses uncovered a missense change, c.1288G>A; p.A430T, in the autophagy-related ATG4D gene on canine chromosome 20 with a highly significant disease association (p = 3.8 x 10-136) in a cohort of more than 2300 Lagotto Romagnolo dogs. ATG4D encodes a poorly characterized cysteine protease belonging to the macroautophagy pathway. Accordingly, our histological analyses indicated altered autophagic flux in affected tissues. The knockdown of the zebrafish homologue atg4da resulted in a widespread developmental disturbance and neurodegeneration in the central nervous system. Our study describes a previously unknown canine neurological disease with particular pathological features and implicates the ATG4D protein as an important autophagy mediator in neuronal homeostasis. The canine phenotype serves as a model to delineate the disease-causing pathological mechanism(s) and ATG4D function, and can also be used to explore treatment options. Furthermore, our results reveal a novel candidate gene for human neurodegeneration and enable the development of a genetic test for veterinary diagnostic and breeding purposes.


Assuntos
Autofagia/genética , Cisteína Endopeptidases/genética , Mutação de Sentido Incorreto , Doenças Neurodegenerativas/genética , Vacúolos/metabolismo , Sequência de Aminoácidos , Animais , Sequência de Bases , Encéfalo/metabolismo , Encéfalo/patologia , Cisteína Endopeptidases/química , Cisteína Endopeptidases/metabolismo , Cães , Dados de Sequência Molecular , Doenças Neurodegenerativas/patologia , Doenças Neurodegenerativas/veterinária , Vacúolos/genética , Peixe-Zebra
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA