Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Environ Microbiol Rep ; 16(5): e13275, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39228346

RESUMO

Olive anthracnose induced by different Colletotrichum species causes dramatic losses of fruit yield and oil quality. The increasing incidence of Colletotrichum fioriniae (Colletotrichum acutatum species complex) as causal agent of olive anthracnose in Italy, is endorsing new studies on its biology, ecology, and environmental factors such as temperature. Five isolates from different sampling sites in Lazio region (Central Italy) were studied under controlled laboratory conditions aiming to better understand the differences of thermal development among the isolates and to lay the foundations of a future mathematical model able to describe the key aspects of the pathogen's life cycle. The mycelial growth rate and the conidial germination rate were assessed at seven different constant temperatures (5, 10, 15, 20, 25, 30, and 35°C) and fixed relative humidity (100% RH). The obtained dataset was analysed to estimate the parameters of mathematical functions that connect the mycelial growth rate and the spore germination with the environmental temperature. The parameters set provided as the result of this study constitute a key step forward in the biological knowledge of the species and the basis for future formulations of mathematical models that might be the core of decision support systems in an integrated pest management framework.


Assuntos
Colletotrichum , Olea , Doenças das Plantas , Esporos Fúngicos , Temperatura , Colletotrichum/crescimento & desenvolvimento , Olea/microbiologia , Doenças das Plantas/microbiologia , Esporos Fúngicos/crescimento & desenvolvimento , Itália , Micélio/crescimento & desenvolvimento , Frutas/microbiologia
2.
Microbiol Res ; 287: 127851, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39094393

RESUMO

Despite Corylus avellana L. being an economically important shrub species known for its resilience to adverse environmental conditions, it constantly faces attacks from a plethora of biotic entities. Among these, the mite pest Phytoptus avellanae is gaining importance, causing economic losses every year. This mite colonises the new generative and vegetative buds, leading them to become swollen and reddish, and drastically reducing hazelnut production. The biology behind gall formation is still poorly understood. This study provides a qualitative and quantitative description of the microbiome in both healthy and infested buds of two economically important hazelnut cultivars through metabarcoding of fungal ITS and bacterial 16 S. Potentially pathogenic genera such as Fusarium and Pseudomonas were predominant in the infested buds, along with the obligate intracellular bacterial genus Wolbachia. Akanthomyces muscarius was instead isolated from culture-based methods only from the infested buds. These findings could improve the understanding of gall ecology, supporting the management of mite populations, and they could also serve as a milestone for further studies on low-impact, monitoring-driven, and genetically targeted control strategies.


Assuntos
Bactérias , Biodiversidade , Corylus , Código de Barras de DNA Taxonômico , Microbiota , Corylus/microbiologia , Animais , Bactérias/classificação , Bactérias/genética , Bactérias/isolamento & purificação , Fungos/classificação , Fungos/genética , Fungos/isolamento & purificação , Ácaros/microbiologia , Tumores de Planta/microbiologia , Fusarium/genética , Fusarium/classificação , Fusarium/isolamento & purificação
3.
Genes (Basel) ; 15(8)2024 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-39202354

RESUMO

The capability of entomopathogenic fungi to live as plant endophytes is well established. However, their presence in undiscovered environmental niches represents the beginning of a new challenging research journey. Recently, Akanthomyces muscarius (Ascomycota, Cordycipitaceae) (Petch) Spatafora, Kepler & B. Shrestha was isolated from hazelnut buds infested by the big bud mite pest Phytoptus avellanae Nalepa, which makes the buds swollen, reddish, and unable to further develop. Gall formation is known to be regulated by a consortium of microbes and mites, and to better understand the possible role of A. muscarius within the infested gall, its whole genome sequence was obtained using a hybrid approach of Illumina and Nanopore reads. The functional and comparative genomics analysis provided within this study may help answer questions related to the ecology and the entomopathogenicity of this fungus.


Assuntos
Corylus , Genoma Fúngico , Animais , Corylus/microbiologia , Corylus/parasitologia , Ácaros/microbiologia , Ácaros/genética , Ascomicetos/genética , Ascomicetos/patogenicidade , Genômica/métodos , Tumores de Planta/microbiologia , Tumores de Planta/parasitologia , Doenças das Plantas/microbiologia , Doenças das Plantas/parasitologia
4.
PLoS One ; 18(5): e0286130, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37205697

RESUMO

Septoria leaf spot is one of the most widespread diseases affecting pistachio (Pistacia vera) in countries of the Mediterranean region. Septoria pistaciarum was recently confirmed as the causal agent of this disease in Italy. Currently, the detection of S. pistaciarum relies on isolation techniques. These require significant amounts of labor, and time for completion. Also, a reliable identification requires the sequencing of at least two housekeeping genes, in addition to the morphological observations. To accurately detect the presence and quantify S. pistaciarum in pistachio tissues, a molecular tool was necessary. We designed applicable primers that allow reliable amplification of the ß-tubulin gene. The amplification of target DNA was highly efficient, with a 100% success rate, and the assay was able to detect as little as 100 fg/rxn of pure fungal DNA. When tested in artificial mixtures of plant and pathogen DNAs, the assay was able to detect the pathogen consistently at a limit of detection of 1 pg/rxn. The assay was also effective in identifying the pathogen in naturally infected samples, providing rapid detection in all symptomatic specimens. The resulting qPCR assay is an improved detection tool for accurate diagnosis of S. pistaciarum that can also contribute to better understand the population dynamics of the pathogen in the orchard.


Assuntos
Ascomicetos , Pistacia , Pistacia/genética , Reação em Cadeia da Polimerase/métodos , Ascomicetos/genética , Itália
5.
Sci Rep ; 13(1): 3356, 2023 02 27.
Artigo em Inglês | MEDLINE | ID: mdl-36849528

RESUMO

The first genome assemblies of Gnomoniopsis castaneae (syn. G. smithogilvyi), the causal agent of chestnut brown rot of kernels, shoot blight and cankers, are provided here. Specifically, the complete genome of the Italian ex-type MUT401 isolate was compared to the draft genome of a second Italian isolate (GN01) and to the ICMP 14040 isolate from New Zealand. The three genome sequences were obtained through a hybrid assembly using both short Illumina reads and long Nanopore reads, their coding sequences were annotated and compared with each other and with other Diaporthales. The information offered by the genome assembly of the three isolates represents the base of data for further application related to -omics strategies of the fungus and to develop markers for population studies at a local and global scale.


Assuntos
Ascomicetos , Conjuntivite Bacteriana , Genômica , Ascomicetos/genética , Éxons
6.
Environ Microbiol Rep ; 14(2): 274-285, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35107220

RESUMO

Pseudomonas savastanoi pv. savastanoi, the causal agent of olive knot disease, is a fluorescent Gram-negative bacterium classified, according to the specific LOPAT profile, as Ib. However, during the 90s, a number of atypical non-fluorescent levan-positive strains of Pseudomonas savastanoi pv. savastanoi have been unexpectedly isolated from olive knots in Central Italy. Since its first report, several studies were conducted on this species variant, but its genome sequence has never been reported. The complete genome sequence and two additional plasmids of PVFi1, a representative strain, were here obtained using a hybrid sequencing approach with both Oxford Nanopore Technology and Illumina sequencing. A thorough genomic analysis unravelled several genetic features of this peculiar strain, showing a transposase insertion downstream a fragmented copy of the levansucrase gene. The same features were previously reported on levan-negative Pseudomonas savastanoi pv. savastanoi strains. In addition, a second copy of the levansucrase gene fully equipped for a gene expression and comparable to the levan-positive Pseudomonas savastanoi pv. glycinea, may explain the levan-positive test. This result provides a solid genetic demonstration that the bacterial species Pseudomonas savastanoi contains either levan-positive or levan-negative strains, providing insights for an update of the related LOPAT classification.


Assuntos
Olea , Frutanos/metabolismo , Olea/microbiologia , Doenças das Plantas/microbiologia , Pseudomonas/genética , Pseudomonas/metabolismo
7.
Front Plant Sci ; 12: 788584, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34975974

RESUMO

In summer 2019, during a survey on the health status of a hazelnut orchard located in the Tuscia area (the province of Viterbo, Latium, Italy), nuts showing symptoms, such as brown-grayish spots at the bottom of the nuts progressing upward to the apex, and necrotic patches on the bracts and, sometimes, on the petioles, were found and collected for further studies. This syndrome is associated with the nut gray necrosis (NGN), whose main causal agent is Fusarium lateritium. Aiming to increase knowledge about this fungal pathogen, the whole-genome sequencing of a strain isolated from symptomatic hazelnut was performed using long Nanopore reads technology in combination with the higher precision of the Illumina reads, generating a high-quality genome assembly. The following phylogenetic and comparative genomics analysis suggested that this isolate is caused by the F. tricinctum species complex rather than F. lateritium one, as initially hypothesized. Thus, this study demonstrates that different Fusarium species can infect Corylus avellana producing the same symptomatology. In addition, it sheds light onto the genetic features of the pathogen in subject, clarifying facets about its biology, epidemiology, infection mechanisms, and host spectrum, with the future objective to develop specific and efficient control strategies.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA