Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
Metabolites ; 13(3)2023 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-36984853

RESUMO

Metabolic surgery is an essential option in the treatment of obese patients with type 2 diabetes (T2D). Despite its known advantages, this surgery still needs to be introduced in Malaysia. In this prospective study, the pathophysiological mechanisms at the molecular level will be studied and the metabolomics pathways of diabetes remission will be explored. The present study aims to evaluate the changes in the anthropometric measurements, body composition, phase angle, diet intake, biochemistry parameters, adipokines, microRNA, and metabolomics, both pre- and post-surgery, among obese diabetic patients in Malaysia. This is a multicenter prospective cohort study that will involve obese patients (n = 102) with a body mass index (BMI) of ≥25 kg/m2 (Asian BMI categories: WHO/IASO/IOTF, 2000) who will undergo metabolic surgery. They will be categorized into three groups: non-diabetes, prediabetes, and diabetes. Their body composition will be measured using a bioimpedance analyzer (BIA). The phase angle (PhA) data will be analyzed. Venous blood will be collected from each patient for glycated hemoglobin (HbA1c), lipids, liver, renal profile, hormones, adipokines, and molecular and metabolomics analyses. The serum microRNA will be measured. A gene expression study of the adipose tissue of different groups will be conducted to compare the groups. The relationship between the 1HNMR-metabolic fingerprint and the patients' lifestyles and dietary practices will be determined. The factors responsible for the excellent remission of T2D will be explored in this study.

2.
J Clin Endocrinol Metab ; 108(8): 2065-2077, 2023 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-36683389

RESUMO

CONTEXT: Gut bacteria can influence host immune responses but little is known about their role in tolerance-loss mechanisms in Graves disease (GD; hyperthyroidism caused by autoantibodies, TRAb, to the thyrotropin receptor, TSHR) and its progression to Graves orbitopathy (GO). OBJECTIVE: This work aimed to compare the fecal microbiota in GD patients, with GO of varying severity, and healthy controls (HCs). METHODS: Patients were recruited from 4 European countries (105 GD patients, 41 HCs) for an observational study with cross-sectional and longitudinal components. RESULTS: At recruitment, when patients were hyperthyroid and TRAb positive, Actinobacteria were significantly increased and Bacteroidetes significantly decreased in GD/GO compared with HCs. The Firmicutes to Bacteroidetes (F:B) ratio was significantly higher in GD/GO than in HCs. Differential abundance of 15 genera was observed in patients, being most skewed in mild GO. Bacteroides displayed positive and negative correlations with TSH and free thyroxine, respectively, and was also significantly associated with smoking in GO; smoking is a risk factor for GO but not GD. Longitudinal analyses revealed that the presence of certain bacteria (Clostridiales) at diagnosis correlated with the persistence of TRAb more than 200 days after commencing antithyroid drug treatment. CONCLUSION: The increased F:B ratio observed in GD/GO mirrors our finding in a murine model comparing TSHR-immunized with control mice. We defined a microbiome signature and identified changes associated with autoimmunity as distinct from those due to hyperthyroidism. Persistence of TRAb is predictive of relapse; identification of these patients at diagnosis, via their microbiome, could improve management with potential to eradicate Clostridiales.


Assuntos
Microbioma Gastrointestinal , Doença de Graves , Oftalmopatia de Graves , Hipertireoidismo , Humanos , Camundongos , Animais , Índigo Carmim/uso terapêutico , Estudos Transversais , Autoanticorpos , Receptores da Tireotropina , Hipertireoidismo/complicações
3.
Front Endocrinol (Lausanne) ; 12: 739994, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34899596

RESUMO

Graves' orbitopathy (GO) is a complex and poorly understood disease in which extensive remodeling of orbital tissue is dominated by adipogenesis and hyaluronan production. The resulting proptosis is disfiguring and underpins the majority of GO signs and symptoms. While there is strong evidence for the thyrotropin receptor (TSHR) being a thyroid/orbit shared autoantigen, the insulin-like growth factor 1 receptor (IGF1R) is also likely to play a key role in the disease. The pathogenesis of GO has been investigated extensively in the last decade with further understanding of some aspects of the disease. This is mainly derived by using in vitro and ex vivo analysis of the orbital tissues. Here, we have summarized the features of GO pathogenesis involving target autoantigens and their signaling pathways.


Assuntos
Oftalmopatia de Graves/metabolismo , Receptor IGF Tipo 1/metabolismo , Receptores da Tireotropina/metabolismo , Transdução de Sinais/fisiologia , Glândula Tireoide/metabolismo , Humanos , Ácido Hialurônico/metabolismo
4.
Curr Issues Mol Biol ; 43(3): 1794-1804, 2021 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-34889904

RESUMO

Thyroid stimulating antibodies (TSAB) cause Graves' disease and contribute to Graves' Orbitopathy (GO) pathogenesis. We hypothesise that the presence of TSH binding proteins (truncated TSHR variants (TSHRv)) and/or nonclassical ligands such as thyrostimulin (α2ß5) might provide a mechanism to protect against or exacerbate GO. We analysed primary human orbital preadipocyte-fibroblasts (OF) from GO patients and people free of GO (non-GO). Transcript (QPCR) and protein (western blot) expression levels of TSHRv were measured through an adipogenesis differentiation process. Cyclic-AMP production by TSHR activation was studied using luciferase-reporter and RIA assays. After differentiation, TSHRv levels in OF from GO were significantly higher than non-GO (p = 0.039), and confirmed in ex vivo analysis of orbital adipose samples. TSHRv western blot revealed a positive signal at 46 kDa in cell lysates and culture media (CM) from non-GO and GO-OF. Cyclic-AMP decreased from basal levels when OF were stimulated with TSH or Monoclonal TSAB (M22) before differentiation protocol, but increased in differentiated cells, and was inversely correlated with the TSHRv:TSHR ratio (Spearman correlation: TSH r = -0.55, p = 0.23, M22 r = 0.87, p = 0.03). In the bioassay, TSH/M22 induced luciferase-light was lower in CM from differentiated GO-OF than non-GO, suggesting that secreted TSHRv had neutralised their effects. α2 transcripts were present but reduced during adipogenesis (p < 0.005) with no difference observed between non-GO and GO. ß5 transcripts were at the limit of detection. Our work demonstrated that TSHRv transcripts are expressed as protein, are more abundant in GO than non-GO OF and have the capacity to regulate signalling via the TSHR.


Assuntos
Proteínas de Transporte/genética , Suscetibilidade a Doenças , Expressão Gênica , Oftalmopatia de Graves/etiologia , Oftalmopatia de Graves/metabolismo , Tireotropina/metabolismo , Autoanticorpos/imunologia , Biomarcadores , Proteínas de Transporte/metabolismo , Variação Genética , Humanos , Receptores da Tireotropina/genética , Receptores da Tireotropina/metabolismo
5.
Endocrinology ; 162(12)2021 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-34473251

RESUMO

CONTEXT: Depot-specific expansion of orbital adipose tissue (OAT) in Graves orbitopathy (GO; an autoimmune condition producing proptosis, visual impairment and reduced quality of life) is associated with fatty acid (FA)-uptake-driven adipogenesis in preadipocytes/fibroblasts (PFs). OBJECTIVE: This work sought a role for mitochondria in OAT adipogenesis in GO. METHODS: Confluent PFs from healthy OAT (OAT-H), OAT from GO (OAT-GO) and white adipose tissue in culture medium compared with culture medium containing a mixed hormonal cocktail as adipogenic medium (ADM), or culture-medium containing FA-supplementation, oleate:palmitate:linoleate (45:30:25%) with/without different concentration of mitochondrial biosubstrate adenosine 5'-diphosphate/guanosine 5'-diphosphate (ADP/GDP), AICAR (adenosine analogue), or inhibitor oligomycin-A for 17 days. Main outcome measures included oil-red-O staining and foci count of differentiated adipocytes for in vitro adipogenesis, flow cytometry, relative quantitative polymerase chain reaction, MTS-assay/106 cells, total cellular-ATP detection kit, and Seahorse-XFe96-Analyzer for mitochondria and oxidative-phosphorylation (OXPHOS)/glycolysis-ATP production analysis. RESULTS: During early adipogenesis before adipocyte formation (days 0, 4, and7), we observed OAT-specific cellular ATP production via mitochondrial OXPHOS in PFs both from OAT-H and OAT-GO, and substantially disrupted OXPHOS-ATP/glycolysis-ATP production in PFs from OAT-GO, for example, a 40% reduction in OXPHOS-ATP and trend-increased glycolysis-ATP production on days 4 and 7 compared with day 0, which contrasted with the stable levels in OAT-H. FA supplementation in culture-medium triggered adipogenesis in PFs both from OAT-H and OAT-GO, which was substantially enhanced by 1-mM GDP reaching 7% to 18% of ADM adipogenesis. The FA-uptake-driven adipogenesis was diminished by oligomycin-A but unaffected by treatment with ADP or AICAR. Furthermore, we observed a significant positive correlation between FA-uptake-driven adipogenesis by GDP and the ratios of OXPHOS-ATP/glycolysis-ATP through adipogenesis of PFs from OAT-GO. CONCLUSION: Our study confirmed that FA uptake can drive OAT adipogenesis and revealed a fundamental role for mitochondria-OXPHOS in GO development, which provides potential for therapeutic interventions.


Assuntos
Adipogenia/fisiologia , Ácidos Graxos/metabolismo , Oftalmopatia de Graves/metabolismo , Mitocôndrias/fisiologia , Adipócitos/metabolismo , Tecido Adiposo/metabolismo , Tecido Adiposo/patologia , Diferenciação Celular , Células Cultivadas , Fibroblastos/metabolismo , Fibroblastos/patologia , Oftalmopatia de Graves/patologia , Humanos , Metabolismo dos Lipídeos/fisiologia , Órbita , Fosforilação Oxidativa
6.
Int J Mol Sci ; 21(23)2020 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-33266331

RESUMO

Depot specific expansion of orbital-adipose-tissue (OAT) in Graves' Orbitopathy (GO) is associated with lipid metabolism signaling defects. We hypothesize that the unique adipocyte biology of OAT facilitates its expansion in GO. A comprehensive comparison of OAT and white-adipose-tissue (WAT) was performed by light/electron-microscopy, lipidomic and transcriptional analysis using ex vivo WAT, healthy OAT (OAT-H) and OAT from GO (OAT-GO). OAT-H/OAT-GO have a single lipid-vacuole and low mitochondrial number. Lower lipolytic activity and smaller adipocytes of OAT-H/OAT-GO, accompanied by similar essential linoleic fatty acid (FA) and (low) FA synthesis to WAT, revealed a hyperplastic OAT expansion through external FA-uptake via abundant SLC27A6 (FA-transporter) expression. Mitochondrial dysfunction of OAT in GO was apparent, as evidenced by the increased mRNA expression of uncoupling protein 1 (UCP1) and mitofusin-2 (MFN2) in OAT-GO compared to OAT-H. Transcriptional profiles of OAT-H revealed high expression of Iroquois homeobox-family (IRX-3&5), and low expression in HOX-family/TBX5 (essential for WAT/BAT (brown-adipose-tissue)/BRITE (BRown-in-whITE) development). We demonstrated unique features of OAT not presented in either WAT or BAT/BRITE. This study reveals that the pathologically enhanced FA-uptake driven hyperplastic expansion of OAT in GO is associated with a depot specific mechanism (the SLC27A6 FA-transporter) and mitochondrial dysfunction. We uncovered that OAT functions as a distinctive fat depot, providing novel insights into adipocyte biology and the pathological development of OAT expansion in GO.


Assuntos
Tecido Adiposo/patologia , Olho/patologia , Oftalmopatia de Graves/patologia , Adipócitos/metabolismo , Tecido Adiposo Marrom/metabolismo , Tecido Adiposo Branco/metabolismo , Adiposidade , Biologia Computacional/métodos , Olho/metabolismo , Ácidos Graxos/metabolismo , Perfilação da Expressão Gênica , Oftalmopatia de Graves/etiologia , Oftalmopatia de Graves/metabolismo , Metabolismo dos Lipídeos , Lipidômica , Transcriptoma
7.
Thyroid ; 29(4): 563-572, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30880626

RESUMO

BACKGROUND: Previous in vitro experiments have demonstrated that prostaglandin F2-alpha (PF2α) reduced proliferation and adipogenesis in a murine cell line and human orbital fibroblasts derived from subjects with inactive Graves' orbitopathy (GO). The objective of this study was to determine if the PGF2α analogue bimatoprost is effective at reducing proptosis in this population. METHODS: A randomized controlled double-masked crossover trial was conducted in a single tertiary care academic medical center. Patients with long-standing, inactive GO but persistent proptosis (>20 mm in at least one eye) were recruited. Allowing for a 15% dropout rate, 31 patients (26 females) were randomized in order to identify a treatment effect of 2.0 mm (p = 0.05; power 0.88). Following informed consent, participants were randomized to receive bimatoprost or placebo for three months, after which they underwent a two-month washout before switching to the opposite treatment. The primary outcome was the change in exophthalmometry readings over the two three-month treatment periods. RESULTS: The mean exophthalmometer at baseline was 23.6 mm (range 20.0-30.5 mm), and the mean age of the patients was 55 years (range 28-74 years). The median duration of GO was 7.6 years (interquartile range 3.6-12.3 years). The majority were still suffering from diplopia (61.3%) with bilateral involvement (61.3%). Using multi-level modeling adjusted for baseline, period, and carry-over, bimatoprost resulted in a -0.17 mm (reduction) exophthalmometry change ([confidence interval -0.67 to +0.32]; p = 0.490). There was a mean change in intraocular pressure of -2.7 mmHg ([confidence interval -4.0 to -1.4]; p = 0.0070). One patient showed periorbital fat atrophy on treatment, which resolved on stopping treatment. Independent analysis of proptosis by photographic images (all subjects) and subgroup analysis on monocular disease (n = 12) did not show any apparent benefit. CONCLUSIONS: In inactive GO, bimatoprost treatment over a three-month period does not result in an improvement in proptosis.


Assuntos
Dinoprosta/administração & dosagem , Olho/efeitos dos fármacos , Oftalmopatia de Graves/tratamento farmacológico , Administração Oftálmica , Adulto , Idoso , Estudos Cross-Over , Dinoprosta/efeitos adversos , Método Duplo-Cego , Olho/patologia , Feminino , Oftalmopatia de Graves/patologia , Humanos , Masculino , Pessoa de Meia-Idade , Soluções Oftálmicas , Fatores de Tempo , Resultado do Tratamento , País de Gales
8.
Sci Rep ; 8(1): 8386, 2018 05 30.
Artigo em Inglês | MEDLINE | ID: mdl-29849043

RESUMO

Graves' Disease (GD) is an autoimmune condition in which thyroid-stimulating antibodies (TRAB) mimic thyroid-stimulating hormone function causing hyperthyroidism. 5% of GD patients develop inflammatory Graves' orbitopathy (GO) characterized by proptosis and attendant sight problems. A major challenge is to identify which GD patients are most likely to develop GO and has relied on TRAB measurement. We screened sera/plasma from 14 GD, 19 GO and 13 healthy controls using high-throughput proteomics and miRNA sequencing (Illumina's HiSeq2000 and Agilent-6550 Funnel quadrupole-time-of-flight mass spectrometry) to identify potential biomarkers for diagnosis or prognosis evaluation. Euclidean distances and differential expression (DE) based on miRNA and protein quantification were analysed by multidimensional scaling (MDS) and multinomial regression respectively. We detected 3025 miRNAs and 1886 proteins and MDS revealed good separation of the 3 groups. Biomarkers were identified by combined DE and Lasso-penalized predictive models; accuracy of predictions was 0.86 (±0:18), and 5 miRNA and 20 proteins were found including Zonulin, Alpha-2 macroglobulin, Beta-2 glycoprotein 1 and Fibronectin. Functional analysis identified relevant metabolic pathways, including hippo signaling, bacterial invasion of epithelial cells and mRNA surveillance. Proteomic and miRNA analyses, combined with robust bioinformatics, identified circulating biomarkers applicable to diagnose GD, predict GO disease status and optimize patient management.


Assuntos
Oftalmopatia de Graves/genética , Oftalmopatia de Graves/metabolismo , MicroRNAs/genética , Proteômica , Análise de Sequência de RNA , Adulto , Biomarcadores/metabolismo , Análise por Conglomerados , Feminino , Humanos , Masculino , Pessoa de Meia-Idade
9.
Artigo em Inglês | MEDLINE | ID: mdl-28469599

RESUMO

Evidence from clinical and experimental data suggests that thyrotropin receptor (TSHR) signaling is involved in energy expenditure through its impact on white adipose tissue (WAT) and brown adipose tissue (BAT). TSHR expression increases during mesenchymal stem cell (MSC) differentiation into fat. We hypothesize that TSHR activation [TSHR*, elevated thyroid-stimulating hormone, thyroid-stimulating antibodies (TSAB), or activating mutation] influences MSC differentiation, which contributes to body composition changes seen in hypothyroidism or Graves' disease (GD). The role of TSHR activation on adipogenesis was first investigated using ex vivo samples. Neck fat (all euthyroid at surgery) was obtained from GD (n = 11, TSAB positive), toxic multinodular goiter (TMNG, TSAB negative) (n = 6), and control patients with benign euthyroid disease (n = 11, TSAB negative). The effect of TSHR activation was then analyzed using human primary abdominal subcutaneous preadipocytes (n = 16). Cells were cultured in complete medium (CM) or adipogenic medium [ADM, containing thiazolidinedione (TZD), PPARγ agonist, which is able to induce BAT formation] with or without TSHR activation (gain-of-function mutant) for 3 weeks. Adipogenesis was evaluated using oil red O (ORO), counting adipogenic foci, qPCR measurement of terminal differentiation marker (LPL). BAT [PGC-1α, uncoupling protein 1 (UCP1), and ZIC1], pre-BAT (PRDM16), BRITE- (CITED1), or WAT (LEPTIN) markers were analyzed by semiquantitative PCR or qPCR. In ex vivo analysis, there were no differences in the expression of UCP1, PGC-1α, and ZIC1. BRITE marker CITED1 levels were highest in GD followed by TMNG and control (p for trend = 0.009). This was associated with higher WAT marker LEPTIN level in GD than the other two groups (p < 0.001). In primary cell culture, TSHR activation substantially enhanced adipogenesis with 1.4 ± 0.07 (ORO), 8.6 ± 1.8 (foci), and 5.5 ± 1.6 (LPL) fold increases compared with controls. Surprisingly, TSHR activation in CM also significantly increased pre-BAT marker PRDM16; furthermore, TZD-ADM induced adipogenesis showed substantially increased BAT markers, PGC-1α and UCP1. Our study revealed that TSHR activation plays an important role in the adipogenesis process and BRITE/pre-BAT formation, which leads to WAT or BAT phenotype. It may contribute to weight loss as heat during hyperthyroidism and later transforms into WAT posttreatment of GD when patients gain excess weight.

10.
J Extracell Vesicles ; 4: 29159, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26609807

RESUMO

Extracellular vesicles (EVs) are submicron vesicles released from many cell types, including adipocytes. EVs are implicated in the pathogenesis of obesity-driven cardiovascular disease, although the characteristics of adipocyte-derived EVs are not well described. We sought to define the characteristics of adipocyte-derived EVs before and after adipogenesis, hypothesising that adipogenesis would affect EV structure, molecular composition and function. Using 3T3-L1 cells, EVs were harvested at day 0 and day 15 of differentiation. EV and cell preparations were visualised by electron microscopy and EVs quantified by nanoparticle tracking analysis (NTA). EVs were then assessed for annexin V positivity using flow cytometry; lipid and phospholipid composition using 2D thin layer chromatography and gas chromatography; and vesicular protein content by an immuno-phenotyping assay. Pre-adipogenic cells are connected via a network of protrusions and EVs at both time points display classic EV morphology. EV concentration is elevated prior to adipogenesis, particularly in exosomes and small microvesicles. Parent cells contain higher proportions of phosphatidylserine (PS) and show higher annexin V binding. Both cells and EVs contain an increased proportion of arachidonic acid at day 0. PREF-1 was increased at day 0 whilst adiponectin was higher at day 15 indicating EV protein content reflects the stage of adipogenesis of the cell. Our data suggest that EV production is higher in cells before adipogenesis, particularly in vesicles <300 nm. Cells at this time point possess a greater proportion of PS (required for EV generation) whilst corresponding EVs are enriched in signalling fatty acids, such as arachidonic acid, and markers of adipogenesis, such as PREF-1 and PPARγ.

11.
J Clin Endocrinol Metab ; 99(10): 3895-902, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25057882

RESUMO

CONTEXT: Thyroid dysfunction is associated with adverse obstetric outcomes, but there is limited information on pregnancy outcomes in women established on levothyroxine. OBJECTIVE: The objective of the study was to determine the relationship between TSH levels and pregnancy outcomes in levothyroxine-treated women in a large community-based database. DESIGN: This was a historical cohort analysis. PATIENTS: Individuals with a first prescription of levothyroxine from 2001 through 2009 (n = 55 501) were identified from the UK General Practice Research Database (population 5 million). Of these, we identified 7978 women of child-bearing age (18-45 y) and 1013 pregnancies in which levothyroxine had been initiated at least 6 months before conception. MAIN OUTCOME MEASURES: TSH, miscarriage/delivery status, and obstetric outcomes were measured. RESULTS: Forty-six percent of levothyroxine-treated women aged 18-45 years had a TSH level greater than 2.5 mU/L (recommended upper level in the first trimester). Among pregnant women who had their TSH measured in the first trimester, 62.8% had a TSH level greater than 2.5 mU/L, with 7.4% greater than 10 mU/L. Women with TSH greater than 2.5 mU/L in the first trimester had an increased risk of miscarriage compared with women with TSH 0.2-2.5 mU/L after adjusting for age, year of pregnancy, diabetes, and social class (P = .008). The risk of miscarriage was increased in women with TSH 4.51-10 mU/L [odds ratio (OR) 1.80, 95% confidence interval (CI) 1.03, 3.14)] and TSH greater than 10 mU/L (OR 3.95, 95% CI 1.87, 8.37) but not with TSH 2.51-4.5 mU/L (OR 1.09, 95% CI 0.61, 1.93). CONCLUSIONS: The majority of levothyroxine-treated women have early gestational TSH levels above the recommended targets (>2.5 mU/L) with a strong risk of miscarriage at levels exceeding 4.5 mU/L. There is an urgent need to improve the adequacy of thyroid hormone replacement in early pregnancy.


Assuntos
Aborto Espontâneo/epidemiologia , Aborto Espontâneo/metabolismo , Hipotireoidismo/tratamento farmacológico , Tireotropina/sangue , Tiroxina/efeitos adversos , Adolescente , Adulto , Estudos de Coortes , Feminino , Terapia de Reposição Hormonal/efeitos adversos , Terapia de Reposição Hormonal/métodos , Humanos , Hipotireoidismo/epidemiologia , Hipotireoidismo/metabolismo , Pessoa de Meia-Idade , Gravidez , Resultado da Gravidez/epidemiologia , Primeiro Trimestre da Gravidez/metabolismo , Segundo Trimestre da Gravidez/metabolismo , Características de Residência , Fatores de Risco , Tiroxina/administração & dosagem , Adulto Jovem
12.
Thyroid ; 23(12): 1600-8, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24001049

RESUMO

BACKGROUND: In Graves' orbitopathy (GO), increased proliferation, excess adipogenesis, and hyaluronan overproduction produce GO exophthalmos. Enophthalmos occurs in some glaucoma patients treated with Bimatoprost (prostaglandin F2α, PGF2α) eye drops. We hypothesized that enophthalmos is secondary to reductions in orbital tissue proliferation, adipogenesis, and/or increased lipolysis. We aimed to determine which of these is affected by PGF2α by using the 3T3-L1 murine preadipocyte cell line and primary human orbital fibroblasts (OFs) from GO patients (n=5) and non-GO (n=5). METHODS: 3T3-L1 cells and orbital OFs were cultured alone or with PGF2α (all experiments used 10(-8) to 10(-6) M) and counted on days 1/2/3 or 5, respectively; cell cycle analysis (flow cytometry) was applied. Adipogenesis (in the presence/absence of PGF2α) was evaluated (day 7 or 15 for 3T3-L1 and primary cells, respectively) morphologically by Oil Red O staining and quantitative polymerase chain reaction measurement of adipogenesis markers (glycerol-3-phosphate dehydrogenase and lipoprotein lipase, respectively). For lipolysis, in vitro-differentiated 3T3-L1 or mature orbital adipocytes were incubated with norepinephrine and PGF2α and free glycerol was assayed. Appropriate statistical tests were applied. RESULTS: The population doubling time of 3T3-L1 was 27.3±1.4 hours-significantly increased by dimethyl sulfoxide 0.02% to 44.6±4.8 hours (p=0.007) and further significantly increased (p=0.049 compared with dimethyl sulfoxide) by 10(-8) M PGF2α to 93.6±19.0 hours, indicating reduced proliferation, which was caused by prolongation of G2/M. GO OFs proliferated significantly more rapidly than non-GO (population doubling time 5.36±0.34 or 6.63±0.35 days, respectively, p=0.035), but the proliferation of both was significantly reduced (dose dependent from 10(-8) M) by PGF2α, again with prolongation of G2/M. Adipogenesis in 3T3-L1 cells was minimally affected by PGF2α when assessed morphologically, but the drug significantly reduced transcripts of the glycerol-3-phosphate dehydrogenase differentiation marker. GO OFs displayed significantly higher adipogenic potential than non-GO, but in both populations, adipogenesis, evaluated by all 3 methods, was significantly reduced (dose dependent from 10(-8) M) by PGF2α. There was no effect of PGF2α on basal or norepinephrine-induced lipolysis, in 3T3-L1 or human OFs, either GO or non-GO. CONCLUSIONS: The results demonstrate that PGF2α significantly reduces proliferation and adipogenesis and that human OFs are more sensitive to its effects than 3T3-L1. Consequently, PGF2α could be effective in the treatment of GO.


Assuntos
Adipócitos/efeitos dos fármacos , Adipogenia/efeitos dos fármacos , Dinoprosta/farmacologia , Oftalmopatia de Graves/metabolismo , Células 3T3-L1 , Adipócitos/metabolismo , Animais , Proliferação de Células/efeitos dos fármacos , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Humanos , Lipólise/efeitos dos fármacos , Camundongos
13.
Artigo em Inglês | MEDLINE | ID: mdl-24616768

RESUMO

UNLABELLED: Bilateral lower limb paraesthesia is a common diabetic neuropathy presentation in any busy diabetic clinics. We present a case of a 28-year-old man with a long history of type 1 diabetes mellitus presented with bilateral paraesthesia of both feet and unsteady gait. The patient was able to feel a 10 g monofilament. The presence of brisk reflexes and upgoing plantars in this patient were pointers that further evaluation was warranted. Further investigations revealed diagnosis of subacute combined degeneration of spinal cord. The patient had rapid symptomatic improvement with i.m. vitamin B12 injection. The high volume of patients attending the outpatients with diabetes and paraesthesia can blind us to other possible diagnoses. This article emphasizes that peripheral neuropathy in a diabetic may be due to aetiologies other than diabetes. LEARNING POINTS: Pernicious anaemia is known to be more common in patients with type 1 diabetes.Cobalamin deficiency is reversible if detected early enough and treated by B12 replacement.By contrast, diabetic neuropathy is generally a progressive complication of diabetes.Peripheral neuropathy in a diabetic may be due to aetiologies other than diabetes.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA