Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
1.
PLoS One ; 16(6): e0252585, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34081720

RESUMO

OBJECTIVE: This study aimed to develop and validate a claims-based, machine learning algorithm to predict clinical outcomes across both medical and surgical patient populations. METHODS: This retrospective, observational cohort study, used a random 5% sample of 770,777 fee-for-service Medicare beneficiaries with an inpatient hospitalization between 2009-2011. The machine learning algorithms tested included: support vector machine, random forest, multilayer perceptron, extreme gradient boosted tree, and logistic regression. The extreme gradient boosted tree algorithm outperformed the alternatives and was the machine learning method used for the final risk model. Primary outcome was 30-day mortality. Secondary outcomes were: rehospitalization, and any of 23 adverse clinical events occurring within 30 days of the index admission date. RESULTS: The machine learning algorithm performance was evaluated by both the area under the receiver operating curve (AUROC) and Brier Score. The risk model demonstrated high performance for prediction of: 30-day mortality (AUROC = 0.88; Brier Score = 0.06), and 17 of the 23 adverse events (AUROC range: 0.80-0.86; Brier Score range: 0.01-0.05). The risk model demonstrated moderate performance for prediction of: rehospitalization within 30 days (AUROC = 0.73; Brier Score: = 0.07) and six of the 23 adverse events (AUROC range: 0.74-0.79; Brier Score range: 0.01-0.02). The machine learning risk model performed comparably on a second, independent validation dataset, confirming that the risk model was not overfit. CONCLUSIONS AND RELEVANCE: We have developed and validated a robust, claims-based, machine learning risk model that is applicable to both medical and surgical patient populations and demonstrates comparable predictive accuracy to existing risk models.


Assuntos
Aprendizado de Máquina , Resultado do Tratamento , Área Sob a Curva , Bases de Dados Factuais , Hospitalização/estatística & dados numéricos , Humanos , Modelos Logísticos , Medicare , Modelos Teóricos , Mortalidade , Curva ROC , Estudos Retrospectivos , Medição de Risco , Estados Unidos
2.
Ann Intern Med ; 173(1): 21-28, 2020 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-32259197

RESUMO

BACKGROUND: The coronavirus disease 2019 (COVID-19) pandemic challenges hospital leaders to make time-sensitive, critical decisions about clinical operations and resource allocations. OBJECTIVE: To estimate the timing of surges in clinical demand and the best- and worst-case scenarios of local COVID-19-induced strain on hospital capacity, and thus inform clinical operations and staffing demands and identify when hospital capacity would be saturated. DESIGN: Monte Carlo simulation instantiation of a susceptible, infected, removed (SIR) model with a 1-day cycle. SETTING: 3 hospitals in an academic health system. PATIENTS: All people living in the greater Philadelphia region. MEASUREMENTS: The COVID-19 Hospital Impact Model (CHIME) (http://penn-chime.phl.io) SIR model was used to estimate the time from 23 March 2020 until hospital capacity would probably be exceeded, and the intensity of the surge, including for intensive care unit (ICU) beds and ventilators. RESULTS: Using patients with COVID-19 alone, CHIME estimated that it would be 31 to 53 days before demand exceeds existing hospital capacity. In best- and worst-case scenarios of surges in the number of patients with COVID-19, the needed total capacity for hospital beds would reach 3131 to 12 650 across the 3 hospitals, including 338 to 1608 ICU beds and 118 to 599 ventilators. LIMITATIONS: Model parameters were taken directly or derived from published data across heterogeneous populations and practice environments and from the health system's historical data. CHIME does not incorporate more transition states to model infection severity, social networks to model transmission dynamics, or geographic information to account for spatial patterns of human interaction. CONCLUSION: Publicly available and designed for hospital operations leaders, this modeling tool can inform preparations for capacity strain during the early days of a pandemic. PRIMARY FUNDING SOURCE: University of Pennsylvania Health System and the Palliative and Advanced Illness Research Center.


Assuntos
Betacoronavirus , Infecções por Coronavirus/terapia , Tomada de Decisões , Unidades de Terapia Intensiva/organização & administração , Modelos Organizacionais , Pandemias , Pneumonia Viral/terapia , COVID-19 , Infecções por Coronavirus/epidemiologia , Humanos , Pneumonia Viral/epidemiologia , SARS-CoV-2 , Estados Unidos/epidemiologia
3.
JAMA Netw Open ; 2(10): e1915997, 2019 10 02.
Artigo em Inglês | MEDLINE | ID: mdl-31651973

RESUMO

Importance: Machine learning algorithms could identify patients with cancer who are at risk of short-term mortality. However, it is unclear how different machine learning algorithms compare and whether they could prompt clinicians to have timely conversations about treatment and end-of-life preferences. Objectives: To develop, validate, and compare machine learning algorithms that use structured electronic health record data before a clinic visit to predict mortality among patients with cancer. Design, Setting, and Participants: Cohort study of 26 525 adult patients who had outpatient oncology or hematology/oncology encounters at a large academic cancer center and 10 affiliated community practices between February 1, 2016, and July 1, 2016. Patients were not required to receive cancer-directed treatment. Patients were observed for up to 500 days after the encounter. Data analysis took place between October 1, 2018, and September 1, 2019. Exposures: Logistic regression, gradient boosting, and random forest algorithms. Main Outcomes and Measures: Primary outcome was 180-day mortality from the index encounter; secondary outcome was 500-day mortality from the index encounter. Results: Among 26 525 patients in the analysis, 1065 (4.0%) died within 180 days of the index encounter. Among those who died, the mean age was 67.3 (95% CI, 66.5-68.0) years, and 500 (47.0%) were women. Among those who were alive at 180 days, the mean age was 61.3 (95% CI, 61.1-61.5) years, and 15 922 (62.5%) were women. The population was randomly partitioned into training (18 567 [70.0%]) and validation (7958 [30.0%]) cohorts at the patient level, and a randomly selected encounter was included in either the training or validation set. At a prespecified alert rate of 0.02, positive predictive values were higher for the random forest (51.3%) and gradient boosting (49.4%) algorithms compared with the logistic regression algorithm (44.7%). There was no significant difference in discrimination among the random forest (area under the receiver operating characteristic curve [AUC], 0.88; 95% CI, 0.86-0.89), gradient boosting (AUC, 0.87; 95% CI, 0.85-0.89), and logistic regression (AUC, 0.86; 95% CI, 0.84-0.88) models (P for comparison = .02). In the random forest model, observed 180-day mortality was 51.3% (95% CI, 43.6%-58.8%) in the high-risk group vs 3.4% (95% CI, 3.0%-3.8%) in the low-risk group; at 500 days, observed mortality was 64.4% (95% CI, 56.7%-71.4%) in the high-risk group and 7.6% (7.0%-8.2%) in the low-risk group. In a survey of 15 oncology clinicians with a 52.1% response rate, 100 of 171 patients (58.8%) who had been flagged as having high risk by the gradient boosting algorithm were deemed appropriate for a conversation about treatment and end-of-life preferences in the upcoming week. Conclusions and Relevance: In this cohort study, machine learning algorithms based on structured electronic health record data accurately identified patients with cancer at risk of short-term mortality. When the gradient boosting algorithm was applied in real time, clinicians believed that most patients who had been identified as having high risk were appropriate for a timely conversation about treatment and end-of-life preferences.


Assuntos
Aprendizado de Máquina , Neoplasias/mortalidade , Idoso , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Valor Preditivo dos Testes , Medição de Risco
4.
J Gen Intern Med ; 34(9): 1841-1847, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31313110

RESUMO

BACKGROUND: Development of electronic health record (EHR) prediction models to improve palliative care delivery is on the rise, yet the clinical impact of such models has not been evaluated. OBJECTIVE: To assess the clinical impact of triggering palliative care using an EHR prediction model. DESIGN: Pilot prospective before-after study on the general medical wards at an urban academic medical center. PARTICIPANTS: Adults with a predicted probability of 6-month mortality of ≥ 0.3. INTERVENTION: Triggered (with opt-out) palliative care consult on hospital day 2. MAIN MEASURES: Frequencies of consults, advance care planning (ACP) documentation, home palliative care and hospice referrals, code status changes, and pre-consult length of stay (LOS). KEY RESULTS: The control and intervention periods included 8 weeks each and 138 admissions and 134 admissions, respectively. Characteristics between the groups were similar, with a mean (standard deviation) risk of 6-month mortality of 0.5 (0.2). Seventy-seven (57%) triggered consults were accepted by the primary team and 8 consults were requested per usual care during the intervention period. Compared to historical controls, consultation increased by 74% (22 [16%] vs 85 [63%], P < .001), median (interquartile range) pre-consult LOS decreased by 1.4 days (2.6 [1.1, 6.2] vs 1.2 [0.8, 2.7], P = .02), ACP documentation increased by 38% (23 [17%] vs 37 [28%], P = .03), and home palliative care referrals increased by 61% (9 [7%] vs 23 [17%], P = .01). There were no differences between the control and intervention groups in hospice referrals (14 [10] vs 22 [16], P = .13), code status changes (42 [30] vs 39 [29]; P = .81), or consult requests for lower risk (< 0.3) patients (48/1004 [5] vs 33/798 [4]; P = .48). CONCLUSIONS: Targeting hospital-based palliative care using an EHR mortality prediction model is a clinically promising approach to improve the quality of care among seriously ill medical patients. More evidence is needed to determine the generalizability of this approach and its impact on patient- and caregiver-reported outcomes.


Assuntos
Técnicas de Apoio para a Decisão , Cuidados Paliativos/organização & administração , Aceitação pelo Paciente de Cuidados de Saúde/estatística & dados numéricos , Idoso , Idoso de 80 Anos ou mais , Registros Eletrônicos de Saúde , Feminino , Hospitalização/estatística & dados numéricos , Humanos , Masculino , Pessoa de Meia-Idade , Ensaios Clínicos Controlados não Aleatórios como Assunto , Projetos Piloto , Estudos Prospectivos , Encaminhamento e Consulta/organização & administração , Encaminhamento e Consulta/estatística & dados numéricos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA