Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Fungi (Basel) ; 9(11)2023 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-37998889

RESUMO

Chronic pulmonary aspergillosis (CPA) is a chronic progressive lung disease associated with a poor prognosis and a 5-year mortality rate of approximately 40-50%. The disease is characterized by slowly progressive destruction of the lung parenchyma, in the form of multiple cavities, nodules, infiltrates or fibrosis. CPA can be challenging to diagnose due to its non-specific symptoms and similarities with other respiratory conditions combined with the poor awareness of the medical community about the disease. This can result in delayed treatment even for years and worsening of the patient's condition. Serological tests certainly play a significant role in diagnosing CPA but cannot be interpreted without radiological confirmation of CPA. Although many data are published on this hot topic, there is yet no single definitive test for diagnosing CPA, and a multidisciplinary approach which involves a combination of clinical picture, radiological findings, microbiological results and exclusion of other mimicking diseases, is essential for the accurate diagnosis of CPA.

2.
J Cell Sci ; 136(17)2023 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-37545292

RESUMO

Epithelial-to-mesenchymal transition (EMT) gives rise to cells with properties similar to cancer stem cells (CSCs). Targeting the EMT program to selectively eliminate CSCs is a promising way to improve cancer therapy. Salinomycin (Sal), a K+/H+ ionophore, was identified as highly selective towards CSC-like cells, but its mechanism of action and selectivity remains elusive. Here, we show that Sal, similar to monensin and nigericin, disturbs the function of the Golgi. Sal alters the expression of Golgi-related genes and leads to marked changes in Golgi morphology, particularly in cells that have undergone EMT. Moreover, Golgi-disturbing agents severely affect post-translational modifications of proteins, including protein processing, glycosylation and secretion. We discover that the alterations induced by Golgi-disturbing agents specifically affect the viability of EMT cells. Collectively, our work reveals a novel vulnerability related to the EMT, suggesting an important role for the Golgi in the EMT and that targeting the Golgi could represent a novel therapeutic approach against CSCs.


Assuntos
Transição Epitelial-Mesenquimal , Piranos , Linhagem Celular Tumoral , Transição Epitelial-Mesenquimal/genética , Piranos/farmacologia , Piranos/metabolismo , Piranos/uso terapêutico , Complexo de Golgi , Células-Tronco Neoplásicas/metabolismo
3.
Nat Metab ; 5(4): 660-676, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-37024754

RESUMO

Glyceraldehyde 3-phosphate dehydrogenase (GAPDH) is known to contain an active-site cysteine residue undergoing oxidation in response to hydrogen peroxide, leading to rapid inactivation of the enzyme. Here we show that human and mouse cells expressing a GAPDH mutant lacking this redox switch retain catalytic activity but are unable to stimulate the oxidative pentose phosphate pathway and enhance their reductive capacity. Specifically, we find that anchorage-independent growth of cells and spheroids is limited by an elevation of endogenous peroxide levels and is largely dependent on a functional GAPDH redox switch. Likewise, tumour growth in vivo is limited by peroxide stress and suppressed when the GAPDH redox switch is disabled in tumour cells. The induction of additional intratumoural oxidative stress by chemo- or radiotherapy synergized with the deactivation of the GAPDH redox switch. Mice lacking the GAPDH redox switch exhibit altered fatty acid metabolism in kidney and heart, apparently in compensation for the lack of the redox switch. Together, our findings demonstrate the physiological and pathophysiological relevance of oxidative GAPDH inactivation in mammals.


Assuntos
Cisteína , Gliceraldeído-3-Fosfato Desidrogenases , Humanos , Animais , Camundongos , Gliceraldeído-3-Fosfato Desidrogenases/genética , Gliceraldeído-3-Fosfato Desidrogenases/química , Gliceraldeído-3-Fosfato Desidrogenases/metabolismo , Oxirredução , Cisteína/metabolismo , Estresse Oxidativo , Peróxido de Hidrogênio/farmacologia , Mamíferos/metabolismo
4.
ACS Appl Mater Interfaces ; 12(1): 347-351, 2020 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-31829548

RESUMO

A novel approach for the photolabeling of proteins by a BODIPY fluorophore is reported that is based on an anti-Kasha photochemical reaction from an upper singlet excited state (Sn) leading to the deamination of the BODIPY quinone methide precursor. On the other hand, the high photochemical stability of the dye upon excitation by visible light to S1 allows for the selective fluorescence detection from the dye or dye-protein adduct, without concomitant bleaching or hydrolysis of the protein-dye adduct. Therefore, photolabeling and fluorescence monitoring can be uncoupled by using different excitation wavelengths. Combined theoretical and experimental studies by preparative irradiations, fluorescence, and laser flash photolysis fully disclose the photophysical properties of the dye and its anti-Kasha photochemical reactivity. The application of the dye was demonstrated on photolabeling of bovine serum albumin.


Assuntos
Compostos de Boro/química , Indolquinonas/química , Fotoquímica/métodos , Fluorescência , Fotólise , Estrutura Secundária de Proteína
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA