Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Arch Toxicol ; 2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38844554

RESUMO

Alcohol ethoxylates (AEs) are a well-known class of non-ionic surfactants widely used by the personal care market. The aim of this study was to evaluate and characterize the in vitro metabolism of AEs and identify metabolites. Five selected individual homologue AEs (C8EO4, C10EO5, C12EO4, C16EO8, and C18EO3) were incubated using human, rat, and hamster liver S9 fraction and cryopreserved hepatocytes. LC-MS was used to identify metabolites following the incubation of AEs by liver S9 and hepatocytes of all three species. All AEs were metabolized in these systems with a half-life ranging from 2 to 139 min. In general, incubation of AE with human liver S9 showed a shorter half-life compared to rat liver S9. While rat hepatocytes metabolized AEs faster than human hepatocytes. Both hydrophobic alkyl chain and hydrophilic EO head group groups of AEs were found to be target sites of metabolism. Metabolites were identified that show primary hydroxylation and dehydrogenation, followed by O-dealkylation (shortening of EO head groups) and glucuronidation. Additionally, the detection of whole EO groups indicates the cleavage of the ether bond between the alkyl chain and the EO groups as a minor metabolic pathway in the current testing system. Furthermore, no difference in metabolic patterns of each individual homologue AE investigated was observed, regardless of alkyl chain length or the number of EO groups. Moreover, there is an excellent agreement between the in vitro experimental data and the metabolite profile simulations using in silico approaches (OECD QSAR Toolbox). Altogether, these data indicate fast metabolism of all AEs with a qualitatively similar metabolic pathway with some quantitative differences observed in the metabolite profiles. These metabolic studies using different species can provide important reference values for further safety evaluation.

2.
Regul Toxicol Pharmacol ; 90: 262-276, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28958912

RESUMO

The applicability of the Direct Peptide Reactivity Assay (DPRA), the KeratinoSens™ assay and the human cell line activation test (OECD Test Guidelines 442C, 442D, 442E) in predicting the skin sensitising potential of nine lipid (bio)chemicals was investigated. The results from the three assays were integrated using a published prediction model (PM), by which skin sensitisation is predicted if at least two of the three assays yield positive results. Of the eight test substances that were classified as non-sensitisers using available Guinea Pig Maximisation Test (GPMT) data, only five were correctly predicted as 'negative' in the PM. (However, only two were correctly predicted as 'negative' in the murine Local Lymph Node Assay.) The one lipid (bio)chemical that tested positive in the GPMT was also positive applying the PM. Based upon the outcome of the present study, lipid (bio)chemicals with a log Kow up to 7-8 appear amenable to the three assays. However, solubility problems, that were not evident initially, affected the performance of the DPRA. Further investigations are merited to address the conclusiveness of negative test results with concurrent lack of cytotoxicity in the in vitro assays, to evaluate if poorly soluble substances come into contact with the cells.


Assuntos
Alérgenos/imunologia , Alternativas aos Testes com Animais/métodos , Bioensaio/métodos , Dermatite Alérgica de Contato/etiologia , Lipídeos/imunologia , Animais , Linhagem Celular , Cobaias , Humanos , Técnicas In Vitro/métodos , Lipídeos/química , Camundongos , Modelos Biológicos , Medição de Risco , Pele/efeitos dos fármacos , Pele/imunologia , Testes Cutâneos/métodos , Solubilidade , Especificidade da Espécie
3.
Mutat Res ; 539(1-2): 157-66, 2003 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-12948824

RESUMO

The nephrotoxic and nephrocarcinogenic potential of the haloalkenes is associated with the conjugation of the chemicals to L-glutathione. Subsequent processing of the haloalkene glutathione S-conjugates via the cysteine conjugate beta-lyase pathway in the mammalian kidney yields nephrotoxic and mutagenic species. To investigate whether S-conjugates of the model chlorofluoroalkenes 1,1,2-trichloro-3,3,3-trifluoro-1-propene (CAS # 431-52-7) and trichlorofluoroethene (CAS # 359-29-5) show comparable effects, we have synthesised the respective cysteine and glutathione S-conjugates and subjected them to the Ames test. The cysteine and glutathione S-conjugates of tetrachloroethene (CAS # 127-18-4), S-(1,2,2-trichlorovinyl)-L-cysteine (TCVC) and S-(1,2,2-trichlorovinyl)glutathione (TCVG) were used as positive controls and reference substances. S-(1,2-dichloro-3,3,3-trifluoro-1-propenyl)-L-cysteine (DCTFPC) and S-(2,2-dichloro-1-fluorovinyl)-L-cysteine (DCFVC) showed clear dose-dependent mutagenic effects with the Salmonella typhimurium tester strains TA100 and TA98. Using TCVC as a reference substance the following ranking in mutagenic response was established: TCVC>DCTFPC>DCFVC. S-(1,2-dichloro-3,3,3-trifluoro-1-propenyl)glutathione (DCTFPG) and S-(2,2-dichloro-1-fluorovinyl)glutathione (DCFVG) showed potent dose-dependent mutagenic effects with the S. typhimurium tester strain TA100 in the presence of a rat kidney S9-protein fraction; tests carried out in the absence of the bioactivation system resulted only in background rates of revertants. Using TCVG as a reference substance the following ranking in mutagenic response was established: TCVG=DCTFPG>DCFVG. The data obtained provide a basis for further studies on the mutagenic and presumable carcinogenic potential of the substances.


Assuntos
Clorofluorcarbonetos/toxicidade , Cisteína/metabolismo , Glutationa/metabolismo , Mutagênicos , Tetracloroetileno/análogos & derivados , Tetracloroetileno/toxicidade , Tricloroetileno/análogos & derivados , Tricloroetileno/toxicidade , Testes de Mutagenicidade , Salmonella typhimurium/efeitos dos fármacos , Salmonella typhimurium/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA