Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
1.
Spine Deform ; 12(3): 755-761, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38336942

RESUMO

INTRODUCTION: Spinal measurements play an integral role in surgical planning for a variety of spine procedures. Full-length imaging eliminates distortions that can occur with stitched images. However, these images take radiologists significantly longer to read than conventional radiographs. Artificial intelligence (AI) image analysis software that can make such measurements quickly and reliably would be advantageous to surgeons, radiologists, and the entire health system. MATERIALS AND METHODS: Institutional Review Board approval was obtained for this study. Preoperative full-length standing anterior-posterior and lateral radiographs of patients that were previously measured by fellowship-trained spine surgeons at our institution were obtained. The measurements included lumbar lordosis (LL), greatest coronal Cobb angle (GCC), pelvic incidence (PI), coronal balance (CB), and T1-pelvic angle (T1PA). Inter-rater intra-class correlation (ICC) values were calculated based on an overlapping sample of 10 patients measured by surgeons. Full-length standing radiographs of an additional 100 patients were provided for AI software training. The AI algorithm then measured the radiographs and ICC values were calculated. RESULTS: ICC values for inter-rater reliability between surgeons were excellent and calculated to 0.97 for LL (95% CI 0.88-0.99), 0.78 (0.33-0.94) for GCC, 0.86 (0.55-0.96) for PI, 0.99 for CB (0.93-0.99), and 0.95 for T1PA (0.82-0.99). The algorithm computed the five selected parameters with ICC values between 0.70 and 0.94, indicating excellent reliability. Exemplary for the comparison of AI and surgeons, the ICC for LL was 0.88 (95% CI 0.83-0.92) and 0.93 for CB (0.90-0.95). GCC, PI, and T1PA could be determined with ICC values of 0.81 (0.69-0.87), 0.70 (0.60-0.78), and 0.94 (0.91-0.96) respectively. CONCLUSIONS: The AI algorithm presented here demonstrates excellent reliability for most of the parameters and good reliability for PI, with ICC values corresponding to measurements conducted by experienced surgeons. In future, it may facilitate the analysis of large data sets and aid physicians in diagnostics, pre-operative planning, and post-operative quality control.


Assuntos
Algoritmos , Inteligência Artificial , Radiografia , Humanos , Radiografia/métodos , Radiografia/estatística & dados numéricos , Reprodutibilidade dos Testes , Adulto , Feminino , Masculino , Coluna Vertebral/diagnóstico por imagem , Coluna Vertebral/cirurgia , Lordose/diagnóstico por imagem , Pessoa de Meia-Idade , Variações Dependentes do Observador , Curvaturas da Coluna Vertebral/diagnóstico por imagem , Curvaturas da Coluna Vertebral/cirurgia
2.
Global Spine J ; : 21925682241227428, 2024 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-38272462

RESUMO

STUDY DESIGN: Retrospective, mono-centric cohort research study. OBJECTIVES: The analysis of cervical sagittal balance parameters is essential for preoperative planning and dependent on the physician's experience. A fully automated artificial intelligence-based algorithm could contribute to an objective analysis and save time. Therefore, this algorithm should be validated in this study. METHODS: Two surgeons measured C2-C7 lordosis, C1-C7 Sagittal Vertical Axis (SVA), C2-C7-SVA, C7-slope and T1-slope in pre- and postoperative lateral cervical X-rays of 129 patients undergoing anterior cervical surgery. All parameters were measured twice by surgeons and compared to the measurements by the AI algorithm consisting of 4 deep convolutional neural networks. Agreement between raters was quantified, among other metrics, by mean errors and single measure intraclass correlation coefficients for absolute agreement. RESULTS: ICC-values for intra- (range: .92-1.0) and inter-rater (.91-1.0) reliability reflect excellent agreement between human raters. The AI-algorithm could determine all parameters with excellent ICC-values (preop:0.80-1.0; postop:0.86-.99). For a comparison between the AI algorithm and 1 surgeon, mean errors were smallest for C1-C7 SVA (preop: -.3 mm (95% CI:-.6 to -.1 mm), post: .3 mm (.0-.7 mm)) and largest for C2-C7 lordosis (preop:-2.2° (-2.9 to -1.6°), postop: 2.3°(-3.0 to -1.7°)). The automatic measurement was possible in 99% and 98% of pre- and postoperative images for all parameters except T1 slope, which had a detection rate of 48% and 51% in pre- and postoperative images. CONCLUSION: This study validates that an AI-algorithm can reliably measure cervical sagittal balance parameters automatically in patients suffering from degenerative spinal diseases. It may simplify manual measurements and autonomously analyze large-scale datasets. Further studies are required to validate the algorithm on a larger and more diverse patient cohort.

3.
Eur Spine J ; 2024 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-38231388

RESUMO

AIM: Deep learning (DL) algorithms can be used for automated analysis of medical imaging. The aim of this study was to assess the accuracy of an innovative, fully automated DL algorithm for analysis of sagittal balance in adult spinal deformity (ASD). MATERIAL AND METHODS: Sagittal balance (sacral slope, pelvic tilt, pelvic incidence, lumbar lordosis and sagittal vertical axis) was evaluated in 141 preoperative and postoperative radiographs of patients with ASD. The DL, landmark-based measurements, were compared with the ground truth values from validated manual measurements. RESULTS: The DL algorithm showed an excellent consistency with the ground truth measurements. The intra-class correlation coefficient between the DL and ground truth measurements was 0.71-0.99 for preoperative and 0.72-0.96 for postoperative measurements. The DL detection rate was 91.5% and 84% for preoperative and postoperative images, respectively. CONCLUSION: This is the first study evaluating a complete automated DL algorithm for analysis of sagittal balance with high accuracy for all evaluated parameters. The excellent accuracy in the challenging pathology of ASD with long construct instrumentation demonstrates the eligibility and possibility for implementation in clinical routine.

4.
J Orthop Res ; 41(9): 1985-1995, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-36815219

RESUMO

The precise and accurate measurement of implant wear, acetabular cup anteversion and inclination from routine anterior-posterior radiographs still poses a challenge. Current approaches suffer from time-consuming procedures accompanied by low and observer-dependent accuracy and precision. We present and validate a novel, automated method for determining total hip arthroplasty parameters by comparing its accuracy and precision with methods in contemporary scientific literature. The algorithm uses CAD-model-based two dimensional-three dimensional (2D-3D)-registration supported by convolutional neural networks. Two in-vitro experimental set-ups were designed to validate the proposed 2D-3D-method. The set-ups provided 84 predefined wear values and 24 configurations of anteversion and inclination in 114 radiographs. Accuracy and precision were evaluated by systematically comparing the predefined ground truth and the automatically calculated values from in-vitro X-rays. In addition, an algorithm was developed and validated against physician's measurements on clinical X-rays to determine the inclination of the interteardrop (ITL) and biischial line (BL) to account for the individual patient's pelvic rotation in the frontal plane. Using X-rays from experimental set-ups, the determined mean error was 0.014 mm (standard deviation: 0.020 mm; root-mean-square-error: 0.024 mm) for wear in pelvic position, -0.01° (0.24°; 0.23°) for radiographic cup anteversion, and 0.11° (0.38°; 0.39°) for radiographic cup inclination. The inclination of ITL and BL was automatically determined in all clinical X-rays with excellent interclass correlation coefficients of 0.95 and 0.91, respectively. The presented algorithm allows the accurate and precise evaluation of total hip arthroplasty parameters without additional equipment. The method might help to investigate different implant designs, biomaterials, and surgical techniques with greater objectivity.


Assuntos
Artroplastia de Quadril , Prótese de Quadril , Humanos , Tomografia Computadorizada por Raios X/métodos , Acetábulo/diagnóstico por imagem , Acetábulo/cirurgia , Inteligência Artificial
6.
Global Spine J ; : 21925682231154543, 2023 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-36708281

RESUMO

STUDY DESIGN: Retrospective, mono-centric cohort research study. OBJECTIVES: The purpose of this study is to validate a novel artificial intelligence (AI)-based algorithm against human-generated ground truth for radiographic parameters of adolescent idiopathic scoliosis (AIS). METHODS: An AI-algorithm was developed that is capable of detecting anatomical structures of interest (clavicles, cervical, thoracic, lumbar spine and sacrum) and calculate essential radiographic parameters in AP spine X-rays fully automatically. The evaluated parameters included T1-tilt, clavicle angle (CA), coronal balance (CB), lumbar modifier, and Cobb angles in the proximal thoracic (C-PT), thoracic, and thoracolumbar regions. Measurements from 2 experienced physicians on 100 preoperative AP full spine X-rays of AIS patients were used as ground truth and to evaluate inter-rater and intra-rater reliability. The agreement between human raters and AI was compared by means of single measure Intra-class Correlation Coefficients (ICC; absolute agreement; >.75 rated as excellent), mean error and additional statistical metrics. RESULTS: The comparison between human raters resulted in excellent ICC values for intra- (range: .97-1) and inter-rater (.85-.99) reliability. The algorithm was able to determine all parameters in 100% of images with excellent ICC values (.78-.98). Consistently with the human raters, ICC values were typically smallest for C-PT (eg, rater 1A vs AI: .78, mean error: 4.7°) and largest for CB (.96, -.5 mm) as well as CA (.98, .2°). CONCLUSIONS: The AI-algorithm shows excellent reliability and agreement with human raters for coronal parameters in preoperative full spine images. The reliability and speed offered by the AI-algorithm could contribute to the efficient analysis of large datasets (eg, registry studies) and measurements in clinical practice.

7.
Diagnostics (Basel) ; 12(11)2022 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-36359520

RESUMO

The assessment of the knee alignment using standing weight-bearing full-leg radiographs (FLR) is a standardized method. Determining the load-bearing axis of the leg requires time-consuming manual measurements. The aim of this study is to develop and validate a novel algorithm based on artificial intelligence (AI) for the automated assessment of lower limb alignment. In the first stage, a customized mask-RCNN model was trained to automatically detect and segment anatomical structures and implants in FLR. In the second stage, four region-specific neural network models (adaptations of UNet) were trained to automatically place anatomical landmarks. In the final stage, this information was used to automatically determine five key lower limb alignment angles. For the validation dataset, weight-bearing, antero-posterior FLR were captured preoperatively and 3 months postoperatively. Preoperative images were measured by the operating orthopedic surgeon and an independent physician. Postoperative images were measured by the second rater only. The final validation dataset consisted of 95 preoperative and 105 postoperative FLR. The detection rate for the different angles ranged between 92.4% and 98.9%. Human vs. human inter-(ICCs: 0.85−0.99) and intra-rater (ICCs: 0.95−1.0) reliability analysis achieved significant agreement. The ICC-values of human vs. AI inter-rater reliability analysis ranged between 0.8 and 1.0 preoperatively and between 0.83 and 0.99 postoperatively (all p < 0.001). An independent and external validation of the proposed algorithm on pre- and postoperative FLR, with excellent reliability for human measurements, could be demonstrated. Hence, the algorithm might allow for the objective and time saving analysis of large datasets and support physicians in daily routine.

8.
Eur Spine J ; 31(8): 1943-1951, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35796837

RESUMO

PURPOSE: Sagittal balance (SB) plays an important role in the surgical treatment of spinal disorders. The aim of this research study is to provide a detailed evaluation of a new, fully automated algorithm based on artificial intelligence (AI) for the determination of SB parameters on a large number of patients with and without instrumentation. METHODS: Pre- and postoperative sagittal full body radiographs of 170 patients were measured by two human raters, twice by one rater and by the AI algorithm which determined: pelvic incidence, pelvic tilt, sacral slope, L1-S1 lordosis, T4-T12 thoracic kyphosis (TK) and the spino-sacral angle (SSA). To evaluate the agreement between human raters and AI, the mean error (95% confidence interval (CI)), standard deviation and an intra- and inter-rater reliability was conducted using intra-class correlation (ICC) coefficients. RESULTS: ICC values for the assessment of the intra- (range: 0.88-0.97) and inter-rater (0.86-0.97) reliability of human raters are excellent. The algorithm is able to determine all parameters in 95% of all pre- and in 91% of all postoperative images with excellent ICC values (PreOP-range: 0.83-0.91, PostOP: 0.72-0.89). Mean errors are smallest for the SSA (PreOP: -0.1° (95%-CI: -0.9°-0.6°); PostOP: -0.5° (-1.4°-0.4°)) and largest for TK (7.0° (6.1°-7.8°); 7.1° (6.1°-8.1°)). CONCLUSION: A new, fully automated algorithm that determines SB parameters has excellent reliability and agreement with human raters, particularly on preoperative full spine images. The presented solution will relieve physicians from time-consuming routine work of measuring SB parameters and allow the analysis of large databases efficiently.


Assuntos
Cifose , Lordose , Médicos , Inteligência Artificial , Humanos , Cifose/diagnóstico por imagem , Cifose/cirurgia , Lordose/cirurgia , Reprodutibilidade dos Testes , Estudos Retrospectivos , Sacro , Coluna Vertebral/diagnóstico por imagem , Coluna Vertebral/cirurgia
9.
J Neurosurg Spine ; 37(6): 893-901, 2022 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-35901700

RESUMO

OBJECTIVE: The analysis of sagittal alignment by measuring spinopelvic parameters has been widely adopted among spine surgeons globally, and sagittal imbalance is a well-documented cause of poor quality of life. These measurements are time-consuming but necessary to make, which creates a growing need for an automated analysis tool that measures spinopelvic parameters with speed, precision, and reproducibility without relying on user input. This study introduces and evaluates an algorithm based on artificial intelligence (AI) that fully automatically measures spinopelvic parameters. METHODS: Two hundred lateral lumbar radiographs (pre- and postoperative images from 100 patients undergoing lumbar fusion) were retrospectively analyzed by board-certified spine surgeons who digitally measured lumbar lordosis, pelvic incidence, pelvic tilt, and sacral slope. The novel AI algorithm was also used to measure the same parameters. To evaluate the agreement between human and AI-automated measurements, the mean error (95% CI, SD) was calculated and interrater reliability was assessed using the 2-way random single-measure intraclass correlation coefficient (ICC). ICC values larger than 0.75 were considered excellent. RESULTS: The AI algorithm determined all parameters in 98% of preoperative and in 95% of postoperative images with excellent ICC values (preoperative range 0.85-0.92, postoperative range 0.81-0.87). The mean errors were smallest for pelvic incidence both pre- and postoperatively (preoperatively -0.5° [95% CI -1.5° to 0.6°] and postoperatively 0.0° [95% CI -1.1° to 1.2°]) and largest preoperatively for sacral slope (-2.2° [95% CI -3.0° to -1.5°]) and postoperatively for lumbar lordosis (3.8° [95% CI 2.5° to 5.0°]). CONCLUSIONS: Advancements in AI translate to the arena of medical imaging analysis. This method of measuring spinopelvic parameters on spine radiographs has excellent reliability comparable to expert human raters. This application allows users to accurately obtain critical spinopelvic measurements automatically, which can be applied to clinical practice. This solution can assist physicians by saving time in routine work and by avoiding error-prone manual measurements.


Assuntos
Lordose , Humanos , Lordose/diagnóstico por imagem , Lordose/cirurgia , Reprodutibilidade dos Testes , Estudos Retrospectivos , Inteligência Artificial , Qualidade de Vida , Sacro/diagnóstico por imagem , Sacro/cirurgia , Vértebras Lombares/diagnóstico por imagem , Vértebras Lombares/cirurgia
10.
Sci Rep ; 12(1): 10222, 2022 06 17.
Artigo em Inglês | MEDLINE | ID: mdl-35715438

RESUMO

The assessment of spinal shape and mobility is of great importance for long-term therapy evaluation. As frequent radiation should be avoided, especially in children, non-invasive measurements have gained increasing importance. Their comparability between each other however stays elusive. Three non-invasive measurement tools have been compared to each other: Idiag M360, raster stereography and Epionics SPINE. 30 volunteers (15 females/15 males) have each been assessed by each system, investigating lumbar lordosis, thoracic kyphosis and spinal range-of-motion in the sagittal plane. Lumbar lordosis differed significantly (p < 0.001) between measurement devices but correlated significant to each other (Pearson's r 0.5-0.6). Regarding thoracic kyphosis no significant difference and a high correlation (r = 0.8) could be shown between Idiag M360 and raster stereography. For lumbar mobility resulting measurements differed significantly and correlated only moderate between Idiag M360 and Epionics SPINE. Although the different measurement systems are moderate to high correlated to each other, their absolute agreement is limited. This might be explained by differences in their angle definition for lordotic and kyphotic angle, their measurement placement, or their capturing of mobility (static vs. dynamic assessment). Therefore, for long-term evaluation of the back profile, inter-modal comparison of values between different non-invasive devices should be avoided.


Assuntos
Cifose , Lordose , Criança , Feminino , Humanos , Cifose/diagnóstico por imagem , Lordose/diagnóstico por imagem , Vértebras Lombares/diagnóstico por imagem , Masculino , Amplitude de Movimento Articular , Coluna Vertebral
11.
J Biomech ; 53: 185-190, 2017 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-28010945

RESUMO

Finite element models are frequently used to study lumbar spinal biomechanics. Deterministic models are used to reflect a certain configuration, including the means of geometrical and material properties, while probabilistic models account for the inherent variability in the population. Because model parameters are generally uncertain, their predictive power is frequently questioned. In the present study, we determined the sensitivities of spinal forces and motions to material parameters of intervertebral discs, vertebrae, and ligaments and to lumbar morphology. We performed 1200 model simulations using a generic model of the human lumbar spine loaded under pure moments. Coefficients of determination and of variation were determined for all parameter and response combinations. Material properties of the vertebrae displayed the least impact on results, whereas those of the discs and morphology impacted most. The most affected results were the axial compression forces in the vertebral body and in several ligaments during flexion and the facet-joint forces during extension. Intervertebral rotations were considerably affected only when several parameters were varied simultaneously. Results can be used to decide which model parameters require careful consideration in deterministic models and which parameters might be omitted in probabilistic studies. Findings allow quantitative estimation of a model׳s precision.


Assuntos
Disco Intervertebral/fisiologia , Ligamentos/fisiologia , Vértebras Lombares/fisiologia , Modelos Biológicos , Articulação Zigapofisária/fisiologia , Fenômenos Biomecânicos , Análise de Elementos Finitos , Humanos , Região Lombossacral , Pressão , Amplitude de Movimento Articular
12.
J Biomech ; 49(9): 1926-1932, 2016 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-27209550

RESUMO

Disc hydration is controlled by fluid imbibition and exudation and hence by applied load magnitude and history, internal osmotic pressure and disc conditions. It affects both the internal load distribution and external load-bearing of a disc while variations therein give rise to the disc time-dependent characteristics. This study aimed to evaluate the effect of changes in compression preload magnitude on the disc axial cyclic compression stiffness under physiological loading. After 20h of free hydration, effects of various preload magnitudes (no preload, 0.06 and 0.28MPa, applied for eight hours) and disc-bone preparation conditions on disc height and axial stiffness were investigated using 36 disc-bone and 24 isolated disc (without bony endplates) bovine specimens. After preloading, specimens were subjected to ten loading/unloading cycles each of 7.5min compression at 0.5MPa followed by 7.5min at 0.06MPa. Under 0.06MPa preload, the specimen height losses during high loading periods of cyclic loading were greater than corresponding height recoveries during low loading phases. This resulted in a progressive reduction in the specimen height and increase in its stiffness. Differences between disc height losses in high cyclic loads and between stiffness in both load increase and release phases were significant for 0 and 0.06MPa vs. 0.28MPa preload. Results highlight the significant role of disc preload magnitude/history and hence disc height and hydration on disc stiffness in loading/unloading and disc height loss in loading periods. Proper preconditioning and hence hydration level should be achieved if recovery in height loss similar to in vivo conditions is expected.


Assuntos
Disco Intervertebral/fisiologia , Vértebras Lombares/fisiologia , Animais , Líquidos Corporais , Bovinos , Pressão Osmótica , Suporte de Carga/fisiologia
13.
Med Eng Phys ; 38(4): 333-8, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26922676

RESUMO

Improved knowledge on spinal loads and trunk muscle forces may clarify the mechanical causes of various spinal diseases and has the potential to improve the current treatment options. Using an inverse dynamic musculoskeletal model, this sensitivity analysis was aimed to investigate the influence of lumbar spine rhythms and intra-abdominal pressure on the compressive and shear forces in L4-L5 disc and the trunk muscle forces during upper body inclination. Based on in vivo data, three different spine rhythms (SRs) were used along with alternative settings (with/without) of intra-abdominal pressure (IAP). Compressive and shear forces in L4-L5 disc as well as trunk muscle forces were predicted by inverse static simulations from standing upright to 55° of intermediate trunk inclination. Alternate model settings of intra-abdominal pressure and different spine rhythms resulted in significant variation of compression (763 N) and shear forces (195 N) in the L4-L5 disc and in global (454 N) and local (156 N) trunk muscle forces at maximum flexed position. During upper body inclination, the compression forces at L4-L5 disc were mostly released by IAP and increased for larger intervertebral rotation in a lumbar spine rhythm. This study demonstrated that with various possible assumptions of lumbar spine rhythm and intra-abdominal pressure, variation in predicted loads and muscles forces increase with larger flexion. It is therefore, essential to adapt these model parameters for accurate prediction of spinal loads and trunk muscle forces.


Assuntos
Abdome , Vértebras Lombares/fisiologia , Músculos/fisiologia , Postura/fisiologia , Pressão , Tronco/fisiologia , Humanos , Vértebras Lombares/anatomia & histologia , Modelos Anatômicos , Resistência ao Cisalhamento , Suporte de Carga
14.
J Biomech ; 49(5): 638-644, 2016 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-26900033

RESUMO

The individual lumbar lordosis and lumbar motion have been identified to play an important role in pathogenesis of low back pain and are essential references for preoperative planning and postoperative evaluation. The clinical "gold-standard" for measuring lumbar lordosis and its motion are radiological "snap-shots" taken while standing and during upper-body flexion and extension. The extent to which these clinically assessed values characterise lumbar alignment and its motion in daily life merits discussion. A non-invasive measurement-system was employed to measure lumbar lordosis and lumbar motion in 208 volunteers (age: 20-74yrs; ♀/♂: 115/93). For an initial short-term measurement, comparable with the clinical "snap-shot", lumbar lordosis and its motion were assessed while standing and during flexion and extension. Subsequently, volunteers were released to their daily lives while wearing the device, and measurements were performed during the following 24h. The average lumbar lordosis during 24h (8.0°) differed significantly from the standardised measurement while standing (33.3°). Ranges of motion were significantly different throughout the day compared to standing measurements. The influence of the factors age and gender on lordosis and its motion resulted in conflicting results between long- and short-term-measurements. In conclusion, results of short-term examinations differ considerably from the average values during real-life. These findings might be important for surgical planning and increase the awareness of the biomechanical challenges that spinal structures and implants face in real-life. Furthermore, long-term assessments of spinal alignment and motion during daily life can provide valid data on spinal function and can reveal the importance of influential factors.


Assuntos
Lordose/fisiopatologia , Vértebras Lombares/fisiopatologia , Movimento , Adulto , Fenômenos Biomecânicos , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Postura , Amplitude de Movimento Articular , Adulto Jovem
15.
J Biomech ; 49(6): 833-845, 2016 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-26873281

RESUMO

Spinal loads are recognized to play a causative role in back disorders and pain. Knowledge of lumbar spinal loads is required in proper management of various spinal disorders, effective risk prevention and assessment in the workplace, sports and rehabilitation, realistic testing of spinal implants as well as adequate loading in in vitro studies. During the last few decades, researchers have used a number of techniques to estimate spinal loads by measuring in vivo changes in the intradiscal pressure, body height, or forces and moments transmitted via instrumented vertebral implants. In parallel, computational models have been employed to estimate muscle forces and spinal loads under various static and dynamic conditions. Noteworthy is the increasing growth in latter computational investigations. This paper aims to review, compare and critically evaluate the existing literature on in vivo measurements and computational model studies of lumbar spinal loads to lay the foundation for future biomechanical studies. Towards this goal, the paper reviews in separate sections models dealing with static postures (standing, sitting, lying) as well as slow and fast dynamic activities (lifting, sudden perturbations and vibrations). The findings are helpful in many areas such as work place safety design and ergonomics, injury prevention, performance enhancement, implant design and rehabilitation management.


Assuntos
Vértebras Lombares/fisiologia , Suporte de Carga/fisiologia , Animais , Fenômenos Biomecânicos , Simulação por Computador , Humanos , Movimento , Músculo Esquelético/fisiologia , Postura/fisiologia , Pressão , Amplitude de Movimento Articular
16.
Med Eng Phys ; 38(3): 297-301, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26774670

RESUMO

The loads between adjacent vertebrae can be generalised as a single spatial force acting at the intervertebral centre of reaction. The exact position in vivo is unknown. However, in rigid body musculoskeletal models that simulate upright standing, the position is generally assumed to be located at the discs' centres of rotation. The influence of the antero-posterior position of the centre of reaction on muscle activity and joint loads remains unknown. Thus, by using an inverse dynamic model, we varied the position of the centre of reaction at L4/L5 (i), simultaneously at all lumbar levels (ii), and by optimisation at all lumbar levels (iii). Variation of the centres of reaction can considerably influence the activities of lumbar muscles and the joint forces between vertebrae. The optimisation of the position of the centre of reaction reduced the maximum lumbar muscle activity and axial joint forces at L4/L5 from 17.5% to 1.5% of the muscle strength and from 490 N to 390 N, respectively. Thus, when studying individual postures, such as for therapeutic or preventive evaluations, potential differences between the centre of reaction and the centre of rotation might influence the study results. These differences could be taken into account by sensitivity analyses.


Assuntos
Disco Intervertebral/fisiologia , Vértebras Lombares/fisiologia , Modelos Biológicos , Músculos/fisiologia , Postura/fisiologia , Humanos , Disco Intervertebral/anatomia & histologia , Vértebras Lombares/anatomia & histologia , Modelos Anatômicos , Músculos/anatomia & histologia , Suporte de Carga
17.
J Biomech ; 49(6): 890-895, 2016 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-26603872

RESUMO

The repeated lifting of heavy weights has been identified as a risk factor for low back pain (LBP). Whether squat lifting leads to lower spinal loads than stoop lifting and whether lifting a weight laterally results in smaller forces than lifting the same weight in front of the body remain matters of debate. Instrumented vertebral body replacements (VBRs) were used to measure the in vivo load in the lumbar spine in three patients at level L1 and in one patient at level L3. Stoop lifting and squat lifting were compared in 17 measuring sessions, in which both techniques were performed a total of 104 times. The trunk inclination and amount of knee bending were simultaneously estimated from recorded images. Compared with the aforementioned lifting tasks, the patients additionally lifted a weight laterally with one hand 26 times. Only a small difference (4%) in the measured resultant force was observed between stoop lifting and squat lifting, although the knee-bending angle (stoop 10°, squat 45°) and trunk inclination (stoop 52°, squat 39°) differed considerably at the time points of maximal resultant forces. Lifting a weight laterally caused 14% less implant force on average than lifting the same weight in front of the body. The current in vivo biomechanical study does not provide evidence that spinal loads differ substantially between stoop and squat lifting. The anterior-posterior position of the lifted weight relative to the spine appears to be crucial for spinal loading.


Assuntos
Remoção , Dor Lombar/fisiopatologia , Suporte de Carga/fisiologia , Idoso , Fenômenos Biomecânicos , Humanos , Articulação do Joelho/fisiopatologia , Vértebras Lombares/fisiopatologia , Região Lombossacral/fisiopatologia , Masculino , Pessoa de Meia-Idade , Postura
18.
J Biomech ; 49(6): 864-868, 2016 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-26655591

RESUMO

Intradiscal pressure (IDP) is an essential biomechanical parameter and has been the subject of numerous in vivo and in vitro investigations. Although currently available sensors differ in size and measurement principles, no data exist regarding inter-sensor reliability in measuring IDP. Moreover, although discs of various species vary significantly in size and mechanics, the possible effects of sensor insertion on the IDP have never been investigated. The present in vitro study aimed to address these issues. The synchronized signals of two differently sized pressure transducers (Ø1.33 and Ø0.36 mm) obtained during the measurements in two species (bovine and caprine) and their influence on the measured pressure were compared. First, the discs were subjected to three loading periods, and the pressure was measured simultaneously to assess the inter-sensor reliability. In the second test, the effect of the sensor size was evaluated by alternatingly inserting one transducer into the disc while recording the resulting pressure change with the second transducer. Although both sensors yielded similar pressure values (ICC: consistency: 0.964-0.999; absolute agreement: 0.845-0.996) when used simultaneously, the sensor size was determined to influence the measured pressure during the insertion tests. The magnitude of the effect differed between species; it was insignificant in the bovine specimens but significant in the caprine specimens, with a pressure increase of 0.31-0.64 MPa (median: 0.43 MPa) obtained when the larger sensor was inserted. The results suggest that sensor selection for IDP measurements requires special attention and can be crucial for species with smaller disc sizes.


Assuntos
Disco Intervertebral/fisiologia , Vértebras Lombares/fisiologia , Suporte de Carga/fisiologia , Animais , Bovinos , Cabras , Pressão , Reprodutibilidade dos Testes , Transdutores de Pressão
19.
J Biomech ; 49(6): 846-856, 2016 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-26549766

RESUMO

In vivo during the day, intervertebral discs are loaded mainly in compression causing fluid and height losses that are subsequently fully recovered overnight due to fluid inflow under smaller compression. However, in vitro, fluid flow through the endplates, in particular fluid imbibition, is hampered possibly by blood clots formed post mortem. Despite earlier in vitro studies, it remains yet unclear if and how fluid flow conditions in vitro could properly emulate those in vivo. Effects of various preload magnitudes (no preload, 0.06 and 0.28 MPa) and disc-bone preparation conditions (e.g., w/o bony endplates) on disc height and nucleus pressure were investigated using 54 bovine specimens. Changes in specimen height and pressure at different nucleus locations were used as surrogate measures to assess the fluid content and flow within the discs. Under all investigated preparation conditions and preload magnitudes, no significant pressure recovery could be obtained during low loading phases, even without bony endplates. On the contrary, partial to full displacement recovery were reached in particular under 0.28 MPa preload. Results highlight the significant role of disc preload magnitude in disc height recovery during low loading periods. Attention should hence be given in future studies to the proper selection of preload magnitude and duration as well as the animal models used if in vivo response is intended to be replicated. Findings also indicate that flushing the endplates or injection of bone cement respectively neither facilitates nor impedes fluid flow into or out of the disc to a noticeable degree in this bovine disc model.


Assuntos
Disco Intervertebral/fisiologia , Animais , Fenômenos Biomecânicos , Bovinos , Modelos Biológicos , Pressão , Coluna Vertebral/fisiologia , Líquido Sinovial/fisiologia , Suporte de Carga/fisiologia
20.
J Biomech ; 48(12): 3080-7, 2015 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-26294355

RESUMO

Frequent upper body bending is associated with low back pain (LBP). The complex flexion movement, combining lumbar and pelvic motion, is known as "lumbopelvic rhythm" and can be quantified by dividing the change in the lumbar spine curvature by the change in pelvic orientation during flexion movement (L/P ratio). This parameter is clinically essential for LBP prevention, for diagnostic procedures and therapy; however, the effects of age and gender, in detail, are unknown. The Epionics SPINE system, utilizing strain-gauge technology and acceleration sensors, was used to assess lumbar lordosis and sacrum orientation during standing and lumbar angle and sacrum orientation during maximal upper body flexion in 309 asymptomatic subjects (age: 20-75 yrs; ♂: 134; ♀: 175). The effects of age and gender on these characteristics as well as on the resultant range of flexion (RoF) and lumbopelvic rhythm were investigated. Aging significantly reduced lumbar lordosis by 8.2° and sacrum orientation by 6.6° during standing in all subjects. With aging, the lumbar RoF decreased by 7.7°, whereas the pelvic RoF compensated for this effect and increased by 7.0°. The L/P ratio decreased from 0.80 to 0.65 with age; however, this decrease was only significant in men. Gender affected sacrum orientation in standing and in flexion as well as the L/P ratio. This study demonstrated the effects of age and gender on lordosis, sacrum orientation and lumbopelvic rhythm. These findings are of importance for the individual prevention of LBP, and provide a baseline for differentiating symptomatic from asymptomatic age- and gender-matched subjects.


Assuntos
Envelhecimento/fisiologia , Vértebras Lombares/fisiologia , Movimento , Pelve/fisiologia , Caracteres Sexuais , Adulto , Idoso , Feminino , Humanos , Lordose/fisiopatologia , Dor Lombar/fisiopatologia , Região Lombossacral , Masculino , Pessoa de Meia-Idade , Postura , Amplitude de Movimento Articular , Sacro/fisiologia , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA