Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 5126, 2024 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-38429337

RESUMO

The utilization of biochar's as soil amendments for enhancing nutrient retention in subsoils present potential limitations. To address this issue, we conducted a greenhouse experiment to assess the effects of various biochar's derived from animal manures (swine manure, poultry litter, cattle manure) and plant residues (rice straw, soybean straw, corn straw) when applied to surface of an acidic soil. Our study focused on wheat crops under a no-tillage system, with a subsequent evaluation of the residual impacts on soybeans. The experimental design involved the application of biochar's at different rates i.e. 10 and 20 Mg ha-1, followed by the assessment of their influence on NPK levels, pH, and exchangeable Al in stratified soil layers (0-5, 5-10, 10-15, and 15-25 cm). Furthermore, we investigated the interplay between biochar doses and the application of nitrogen (N) in the top 5 cm of soil, specifically examining NO 3 - , NH 4 + , P and K levels. Our findings revealed that in the top 5 cm of soil, biochar doses and N application significantly affected NO 3 - , NH 4 + , P and K concentrations. However, in deeper soil layers, no significant differences were observed among biochar doses with or without N application. Interestingly, K levels were impacted throughout all soil depths, regardless of the presence or absence of N application. Moreover, biochar application up to a 5 cm depth induced favorable changes in soil pH and reduced exchangeable Al. In contrast, deeper layers experienced a decrease in soil pH and an increase in exchangeable Al following biochar treatment. In conclusion, our study demonstrates that biochar's can effectively retain NPK nutrients, enhance soil pH, and decrease exchangeable Al, independent of the type and dosage of application under a no-tillage system. Nonetheless, the efficacy of biochar amendments may vary with soil depth and type of nutrient, warranting careful consideration for maximizing their benefits in sustainable agricultural practices.


Assuntos
Carvão Vegetal , Esterco , Animais , Bovinos , Suínos , Carvão Vegetal/química , Solo/química , Nutrientes , Glycine max
2.
Environ Sci Pollut Res Int ; 30(2): 5076-5088, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-35978233

RESUMO

Orchards and vineyards account for significant copper (Cu) accumulation in the soil due to frequent Cu fungicide applications to control leaf diseases. Although grass species are distributed in these areas likely because of their physiological mechanisms to combat Cu toxicity-related stress, the aim of the present study is to identify grass species presenting biochemical-physiological responses that feature adaptive Cu toxicity tolerance mechanisms. Three grass species native to the Pampa and Atlantic Forest biomes (Paspalum notatum, P. plicatulum, and P. urvillei) and an exotic species (Cynodon dactylon) were tested. Plants were cultivated in pots filled with 4 kg of typic Hapludalf soil, under two Cu availability, control, and toxicity conditions (80 mg Cu kg soil-1). Photosynthetic parameters, relative growth rate, root dry matter, shoot dry matter, the activity of stress-fighting enzymes (superoxide dismutase and guaiacol peroxidase), root biometry, soluble organic carbon, soil pH, and electrical conductivity were evaluated. P. notatum and P. urvillei have physiological characteristics that allow high translocation factor and Cu accumulation in the root and shoot, and it allows their use in phytoremediation processes due to (1) greater activity of stress-fighting enzymes such as POD in the shoot; (2) to larger diameter roots, which allow greater Cu complexation in them - they are lesser sensitive to stress caused by Cu than the other species; and (3) greater soluble organic carbon exudation in the rhizosphere than species P. plicatulum and C. dactylon, which can complex Cu2+ and reduce the presence of forms toxic to plants.


Assuntos
Cobre , Poluentes do Solo , Cobre/toxicidade , Poaceae , Biodegradação Ambiental , Ecossistema , Solo , Plantas , Florestas , Poluentes do Solo/análise , Raízes de Plantas/química
3.
Environ Sci Pollut Res Int ; 29(29): 44186-44198, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35128612

RESUMO

Copper (Cu) can be toxic to vegetables when it is absorbed and accumulated at large concentrations, a fact that increases the risk of excessive addition of this metal to the human food chain. The aims of the current study are (1) to determine the Cu concentrations that have critical toxic effects on beet and cabbage plants, and the potential of these plants to enter the human food chain, as well as (2) to assess the physiological and biochemical responses of representatives of these vegetables grown in nutrient solution presenting increasing Cu concentrations. Beet and cabbage plants were grown for 75 days in pots filled with sand added with nutrient solution presenting six Cu concentrations: 0.00, 0.52, 1.02, 1.52, 2.02 and 2.52 mg Cu L-1. Dry matter yield and Cu accumulation in different plant organs were evaluated. Photosynthetic pigment contents, lipid peroxidation levels (TBARs), superoxide dismutase (SOD) and peroxidase (POD) activity and hydrogen peroxide (H2O2) concentrations in leaves were evaluated. Critical Cu concentrations that led to toxicity in plant organs such as beetroot and cabbage head, which are often found in human diets, corresponded to 1.43 mg Cu L-1 and 1.59 mg Cu L-1, respectively. High Cu concentrations in the nutrient solution have increased Cu concentrations and accumulation in plant tissues. This outcome justified the increased POD and SOD enzyme activity in the leaves of beet and cabbage plants, respectively, and was the cause of reduced plant growth in both crops. Cabbage plants presented higher tolerance to increased Cu levels in the growing environment than beet plants. However, it is necessary being careful at the time to consume both vegetables, when they are grown in Cu-enriched environments.


Assuntos
Beta vulgaris , Brassica , Poluentes do Solo , Cobre/análise , Cadeia Alimentar , Peróxido de Hidrogênio/farmacologia , Poluentes do Solo/análise , Superóxido Dismutase , Verduras
5.
Ecotoxicol Environ Saf ; 216: 112191, 2021 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-33831727

RESUMO

When soybean is grown in soils with high heavy metal concentrations, it may introduce those contaminants into the human food chain, posing risks to human health. This study evaluated the effect of tilling the soil with high Cu, Zn, and Mn levels on soybean physiology and metal accumulation in seeds. Disturbed and undisturbed soil samples were collected in two different sites: a vineyard with high heavy metal concentration and a grassland area, containing natural vegetation. Two soybean cultivars were sown and grown in the greenhouse. Photosynthetic parameters and biochemical analysis of oxidative stress were performed. Cu, Zn, and Mn in leaves and seeds, dry mass, and weight of seeds were evaluated. Soil structure had a high influence on plant growth and physiology, while soil site had a high impact on heavy metal accumulation in leaves and seeds. Soybean plants that grown in vineyard soils with high heavy metal concentrations, accumulated 50% more Zn in leaves and seeds, 70% more Cu in leaves, and 90% more Cu in seeds, than those plants grown in grassland soils. Besides, Zn concentration in seeds was higher than the permissible limit. Moreover, the disturbance of both vineyard soil and grassland soil was not good for plant growth and physiology, which have increased TBARS and H2O2 concentration in plants, transpiration rate, metal concentration in leaves and seeds. Soil disturbance may have caused organic matter oxidation and changes in the composition and quantity of soil microorganisms and it affects the availability of other nutrients in the soil.

6.
Environ Sci Pollut Res Int ; 27(28): 35591-35603, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32594449

RESUMO

Rice (Oryza sativa L.) intermittent irrigation is a potential strategy to mitigate methane (CH4) and nitrous oxide (N2O) emissions, but the effects of dry-wetting intervals on soil electrochemical changes and plant characteristics should be considered. This study was conducted in a greenhouse evaluating CH4 and N2O fluxes in rice under five different irrigation management practices (continuous irrigation (CI), intermittent irrigation with flooding resumption in saturated soil condition (SSI) and soil moisture at field capacity (FCI), saturated soil and irrigation resumption with soil moisture bellow field capacity (FCS), and soil at field capacity (FCD)) and its relation to plant development and global warming potential (GWP). Soil electrochemical conditions and CH4 and N2O emissions were expressively affected by irrigation management. The CI system presented the greatest CH4 flux (20.14 g m-2) and GWP (462.7 g m-2 eq. CO2), whereas intermittent irrigation expressively reduced CH4 emissions. Overall, the N2O flux was low (bellow 20 µg m-2 h-1) even with N application, with greater emissions occurring at the FCD treatment at the beginning of the rice season. Soil moisture at field capacity had no CH4 flux but presented greater GWP (271 g m-2 eq. CO2) than intermittent irrigation systems due to N2O flux while compromising rice plant development. The best soil moisture condition to initiate a flooding cycle during intermittent irrigation is at saturated soil conditions.


Assuntos
Óxido Nitroso/análise , Oryza , Agricultura , China , Aquecimento Global , Metano/análise , Solo
7.
Sci Rep ; 10(1): 955, 2020 01 22.
Artigo em Inglês | MEDLINE | ID: mdl-31969672

RESUMO

Renewing carbon and re-establishing it again in the soil is one of the valuable means to cope with climate change. There are many technologies for carbon apprehension and storage, but the most important one gaining attention is biochar technology. So, to carbonize and return different biological materials back to the farmland, a comprehensive study was proposed to characterize and evaluate the carbon (C) mineralization of biochars produced from different animal manures and crop straws. Six types of biochars were prepared from animal manures (poultry litter, swine and cattle manures) and crop straws (rice, soybean, and corn straws). The biochars were analyzed for chemical characteristics (elemental variables, thermal decomposition, cation exchange capacity, pH, electrical conductivity, specific surface area, and surface functional groups) and an incubation experiment was conducted to evaluate C mineralization from soil biochar mixture. Biochars produced from crop straws resulted to have more C as compared to the biochars produced from animal manures. Concentration of nitrogen was low, while P, K, Ca, and Mg were found reasonably higher in all biochars except swine manure biochar. The plant-derived biochars presented lower CO2 emissions when incorporated to soil at 1 and 2% of C. Varying but all the biochars prepared represented an alkaline pH. Biochars prepared from the crop straws resulted to have more C, alkaline in nature, high CEC, low CO2 emissions, can sequester C and more suitable to enhance the soil fertility in comparison to biochars produced from other sources.


Assuntos
Carbono/química , Carvão Vegetal/química , Esterco , Solo/química , Animais , Bovinos , Aves Domésticas , Suínos
8.
Ciênc. rural (Online) ; 50(1): e20190506, 2020. tab, graf
Artigo em Inglês | LILACS-Express | LILACS | ID: biblio-1055842

RESUMO

ABSTRACT: Among the soil constituents, special attention is given to soil organic matter (SOM) and clay contents, since, among other aspects, they are key factors to nutrient retention and soil aggregates formation, which directly affect the crop production potential. The methods commonly used for the quantification of these constituents have some disadvantages, such as the use of chemical reactants and waste generation. An alternative to these methods is the near-infrared spectroscopy (NIRS) technique. The aim of this research is to evaluate models for SOM and clay quantification in soil samples using spectral data by NIRS. A set (n = 400) of soil samples previously analyzed by traditional methods were used to generate a NIRS calibration curve. The clay content was determined by the hydrometer method while SOM content was determined by sulfochromic solution. For calibration, we used the original spectra (absorbance) and spectral pretreatment (Savitzky-Golay smoothing derivative) in the following models: multiple linear regression (MLR), partial last squares regression (PLSR), support vector machine (SVM) and Gaussian process regression (GPR). The curve validation was performed with the SVM model (best performance in the calibration based on R² and RMSE) in two ways: with 40 random samples from the calibration set and another set with 200 new unknown samples. The soil clay content affects the predictive ability of the calibration curve to estimate SOM content by NIRS. Validation curves showed poorer performance (lower R² and higher RMSE) when generated from unknown samples, where the model tends to overestimate the lower levels and to underestimate the higher levels of clay and SOM. Despite the potential of NIRS technique to predict these attributes, further calibration studies are still needed to use this technique in soil analysis laboratories.


RESUMO: Dentre os constituintes do solo, especial atenção é voltada aos teores de argila e de matéria orgânica do solo (MOS), pois, entre outros aspectos, são determinantes para retenção de nutrientes e a formação de agregados no solo, os quais afetam diretamente o potencial produtivo das culturas. Os métodos mais comumente utilizados para quantificação destes constituintes apresentam algumas desvantagens, como o uso de reagentes químicos e a geração de resíduos. Uma alternativa a estes métodos é o uso da espectroscopia no infravermelho próximo (near infrared spectroscopy - NIRS). O objetivo deste trabalho é avaliar modelos de quantificação dos teores de argila e de MOS em amostras de solo utilizando dados espectrais por meio da técnica NIRS. Foram utilizadas 400 amostras de solos com amplitude nos teores de MOS e argila para geração de uma curva de calibração. A argila foi determinada pelo método do densímetro e a MOS por meio da solução sulfocrômica. Para calibração, utilizou-se os espectros originais (absorbância) e com pré-tratamento espectral (Savitzky-Golay derivative) das 400 amostras nos seguintes modelos: multiple linear regression (MLR), partial last squares regression (PLSR), support vector machine (SVM) e Gaussian process regression (GPR). A validação da curva foi realizada com o modelo que apresentou melhor desempenho na calibração (SVM) de duas maneiras: com 40 amostras aleatórias oriundas daquelas utilizadas na calibração e com outras 200 novas amostras desconhecidas. O teor de argila das amostras de solo afeta a capacidade preditiva da curva de calibração da estimativa do teor de MOS pelo NIRS. A validação das curvas apresentou pior desempenho (menor R² e maior RMSE) quando feita a partir de amostras desconhecidas, cujo modelo tende a superestimar os teores mais baixos e subestimar os teores mais elevados de argila e MOS com a curva gerada. Apesar do potencial de predição destes atributos via NIRS, outros estudos de calibração ainda são necessários para que esta técnica possa ser utilizada em laboratórios de análises de solos.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA