Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
Brain Commun ; 6(3): fcae196, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38915927

RESUMO

Recent epidemiological studies propose an association between parkinsonism and seizures, but the direction of this association is unclear. Focal brain lesions causing new-onset parkinsonism versus seizures may provide a unique perspective on the causal relationship between the two symptoms and involved brain networks. We studied lesions causing parkinsonism versus lesions causing seizures and used the human connectome to identify their connected brain networks. Brain networks for parkinsonism and seizures were compared using spatial correlations on a group and individual lesion level. Lesions not associated with either symptom were used as controls. Lesion locations from 29 patients with parkinsonism were connected to a brain network with the opposite spatial topography (spatial r = -0.85) compared to 347 patients with lesions causing seizures. A similar inverse relationship was found when comparing the connections that were most specific on a group level (spatial r = -0.51) and on an individual lesion level (average spatial r = -0.042; P < 0.001). The substantia nigra was found to be most positively correlated to the parkinsonism network but most negatively correlated to the seizure network (spatial r > 0.8). Brain lesions causing parkinsonism versus seizures map to opposite brain networks, providing neuroanatomical insight into conflicting epidemiological evidence.

2.
medRxiv ; 2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38746381

RESUMO

Recent epidemiological studies propose an association between parkinsonism and seizures, but the direction of this association is unclear. Focal brain lesions causing new-onset parkinsonism versus seizures may provide a unique perspective on the causal relationship between the two symptoms and involved brain networks. We studied lesions causing parkinsonism versus lesions causing seizures and utilized human connectome data to identify their connected brain networks. Brain networks for parkinsonism and seizures were compared using spatial correlations on a group and individual lesion level. Lesions not associated with either symptom were used as controls. Lesion locations from 29 patients with parkinsonism were connected to a brain network with the opposite spatial topography (spatial r =-0.85) compared to 347 patients with lesions causing seizures. A similar inverse relationship was found when comparing the connections that were most specific for lesions causing parkinsonism versus seizures on a group level (spatial r =- 0.51) and on an individual lesion level (average spatial r =-0.042; p<0.001). The substantia nigra was found to be most positively correlated to the parkinsonism network but most negatively correlated to the seizure network (spatial r >0.8). Brain lesions causing parkinsonism versus seizures map to opposite brain networks, providing neuroanatomical insight into conflicting epidemiological evidence.

3.
Artigo em Inglês | MEDLINE | ID: mdl-38763835

RESUMO

OBJECTIVE: Anxiety disorders and subsyndromal anxiety symptoms are highly prevalent in late life. Recent studies support that anxiety may be a neuropsychiatric symptom during preclinical Alzheimer's disease (AD) and that higher anxiety is associated with more rapid cognitive decline and progression to cognitive impairment. However, the associations of specific anxiety symptoms with AD pathologies and with co-occurring subjective and objective cognitive changes have not yet been established. METHODS: Baseline data from the A4 and Longitudinal Evaluation of Amyloid Risk and Neurodegeneration studies were analyzed. Older adult participants (n = 4,486) underwent assessments of anxiety (State-Trait Anxiety Inventory-6 item version [STAI]), and cerebral amyloid-beta (Aß; 18F-florbetapir) PET and a subset underwent tau (18F-flortaucipir) PET. Linear regressions estimated associations of Aß in a cortical composite and tau in the amygdala, entorhinal, and inferior temporal regions with STAI-Total and individual STAI item scores. Models adjusted for age, sex, education, marital status, depression, Apolipoprotein ε4 genotype, and subjective and objective cognition (Cognitive Function Index-participant; Preclinical Alzheimer Cognitive Composite). RESULTS: Greater Aß deposition was significantly associated with higher STAI-Worry, adjusting for all covariates, but not with other STAI items or STAI-Total scores. In mediation analyses, the association of Aß with STAI-Worry was partially mediated by subjective cognition with a stronger direct effect. No associations were found for regional tau deposition with STAI-Total or STAI-Worry score. CONCLUSION: Greater worry was associated with Aß but not tau deposition, independent of subjective and objective cognition in cognitively unimpaired (CU) older adults. These findings implicate worry as an early, specific behavioral marker and a possible therapeutic target in preclinical AD.

4.
Ann Neurol ; 95(5): 929-940, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38400760

RESUMO

OBJECTIVE: Patients with Alzheimer's disease (AD) have diffuse brain atrophy, but some regions, such as the anterior cingulate cortex (ACC), are spared and may even show increase in size compared to controls. The extent, clinical significance, and mechanisms associated with increased cortical thickness in AD remain unknown. Recent work suggested neural facilitation of regions anticorrelated to atrophied regions in frontotemporal dementia. Here, we aim to determine whether increased thickness occurs in sporadic AD, whether it relates to clinical symptoms, and whether it occur in brain regions functionally connected to-but anticorrelated with-locations of atrophy. METHODS: Cross-sectional clinical, neuropsychological, and neuroimaging data from the Alzheimer's Disease Neuroimaging Initiative were analyzed to investigate cortical thickness in AD subjects versus controls. Atrophy network mapping was used to identify brain regions functionally connected to locations of increased thickness and atrophy. RESULTS: AD patients showed increased thickness in the ACC in a region-of-interest analysis and the visual cortex in an exploratory analysis. Increased thickness in the left ACC was associated with preserved cognitive function, while increased thickness in the left visual cortex was associated with hallucinations. Finally, we found that locations of increased thickness were functionally connected to, but anticorrelated with, locations of brain atrophy (r = -0.81, p < 0.05). INTERPRETATION: Our results suggest that increased cortical thickness in Alzheimer's disease is relevant to AD symptoms and preferentially occur in brain regions functionally connected to, but anticorrelated with, areas of brain atrophy. Implications for models of compensatory neuroplasticity in response to neurodegeneration are discussed. ANN NEUROL 2024;95:929-940.


Assuntos
Doença de Alzheimer , Atrofia , Imageamento por Ressonância Magnética , Humanos , Doença de Alzheimer/patologia , Doença de Alzheimer/diagnóstico por imagem , Masculino , Feminino , Idoso , Atrofia/patologia , Estudos Transversais , Córtex Cerebral/patologia , Córtex Cerebral/diagnóstico por imagem , Idoso de 80 Anos ou mais , Giro do Cíngulo/patologia , Giro do Cíngulo/diagnóstico por imagem , Espessura Cortical do Cérebro , Pessoa de Meia-Idade
6.
J Neurol ; 270(11): 5211-5222, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37532802

RESUMO

BACKGROUND: Nearly 1 million Americans are living with multiple sclerosis (MS) and 30-50% will experience memory dysfunction. It remains unclear whether this memory dysfunction is due to overall white matter lesion burden or damage to specific neuroanatomical structures. Here we test if MS memory dysfunction is associated with white matter lesions to a specific brain circuit. METHODS: We performed a cross-sectional analysis of standard structural images and verbal memory scores as assessed by immediate recall trials from 431 patients with MS (mean age 49.2 years, 71.9% female) enrolled at a large, academic referral center. White matter lesion locations from each patient were mapped using a validated algorithm. First, we tested for associations between memory dysfunction and total MS lesion volume. Second, we tested for associations between memory dysfunction and lesion intersection with an a priori memory circuit derived from stroke lesions. Third, we performed mediation analyses to determine which variable was most associated with memory dysfunction. Finally, we performed a data-driven analysis to derive de-novo brain circuits for MS memory dysfunction using both functional (n = 1000) and structural (n = 178) connectomes. RESULTS: Both total lesion volume (r = 0.31, p < 0.001) and lesion damage to our a priori memory circuit (r = 0.34, p < 0.001) were associated with memory dysfunction. However, lesion damage to the memory circuit fully mediated the association of lesion volume with memory performance. Our data-driven analysis identified multiple connections associated with memory dysfunction, including peaks in the hippocampus (T = 6.05, family-wise error p = 0.000008), parahippocampus, fornix and cingulate. Finally, the overall topography of our data-driven MS memory circuit matched our a priori stroke-derived memory circuit. CONCLUSIONS: Lesion locations associated with memory dysfunction in MS map onto a specific brain circuit centered on the hippocampus. Lesion damage to this circuit fully mediated associations between lesion volume and memory. A circuit-based approach to mapping MS symptoms based on lesions visible on standard structural imaging may prove useful for localization and prognosis of higher order deficits in MS.


Assuntos
Esclerose Múltipla , Acidente Vascular Cerebral , Humanos , Feminino , Pessoa de Meia-Idade , Masculino , Esclerose Múltipla/complicações , Esclerose Múltipla/diagnóstico por imagem , Esclerose Múltipla/patologia , Estudos Transversais , Imageamento por Ressonância Magnética/métodos , Memória de Curto Prazo , Acidente Vascular Cerebral/complicações , Encéfalo/patologia
7.
JAMA Neurol ; 80(9): 891-902, 2023 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-37399040

RESUMO

Importance: It remains unclear why lesions in some locations cause epilepsy while others do not. Identifying the brain regions or networks associated with epilepsy by mapping these lesions could inform prognosis and guide interventions. Objective: To assess whether lesion locations associated with epilepsy map to specific brain regions and networks. Design, Setting, and Participants: This case-control study used lesion location and lesion network mapping to identify the brain regions and networks associated with epilepsy in a discovery data set of patients with poststroke epilepsy and control patients with stroke. Patients with stroke lesions and epilepsy (n = 76) or no epilepsy (n = 625) were included. Generalizability to other lesion types was assessed using 4 independent cohorts as validation data sets. The total numbers of patients across all datasets (both discovery and validation datasets) were 347 with epilepsy and 1126 without. Therapeutic relevance was assessed using deep brain stimulation sites that improve seizure control. Data were analyzed from September 2018 through December 2022. All shared patient data were analyzed and included; no patients were excluded. Main Outcomes and Measures: Epilepsy or no epilepsy. Results: Lesion locations from 76 patients with poststroke epilepsy (39 [51%] male; mean [SD] age, 61.0 [14.6] years; mean [SD] follow-up, 6.7 [2.0] years) and 625 control patients with stroke (366 [59%] male; mean [SD] age, 62.0 [14.1] years; follow-up range, 3-12 months) were included in the discovery data set. Lesions associated with epilepsy occurred in multiple heterogenous locations spanning different lobes and vascular territories. However, these same lesion locations were part of a specific brain network defined by functional connectivity to the basal ganglia and cerebellum. Findings were validated in 4 independent cohorts including 772 patients with brain lesions (271 [35%] with epilepsy; 515 [67%] male; median [IQR] age, 60 [50-70] years; follow-up range, 3-35 years). Lesion connectivity to this brain network was associated with increased risk of epilepsy after stroke (odds ratio [OR], 2.82; 95% CI, 2.02-4.10; P < .001) and across different lesion types (OR, 2.85; 95% CI, 2.23-3.69; P < .001). Deep brain stimulation site connectivity to this same network was associated with improved seizure control (r, 0.63; P < .001) in 30 patients with drug-resistant epilepsy (21 [70%] male; median [IQR] age, 39 [32-46] years; median [IQR] follow-up, 24 [16-30] months). Conclusions and Relevance: The findings in this study indicate that lesion-related epilepsy mapped to a human brain network, which could help identify patients at risk of epilepsy after a brain lesion and guide brain stimulation therapies.


Assuntos
Epilepsia , Acidente Vascular Cerebral , Humanos , Masculino , Pessoa de Meia-Idade , Adulto , Feminino , Estudos de Casos e Controles , Encéfalo/patologia , Epilepsia/etiologia , Epilepsia/patologia , Convulsões/fisiopatologia , Acidente Vascular Cerebral/fisiopatologia
8.
Nat Med ; 28(6): 1249-1255, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35697842

RESUMO

Drug addiction is a public health crisis for which new treatments are urgently needed. In rare cases, regional brain damage can lead to addiction remission. These cases may be used to identify therapeutic targets for neuromodulation. We analyzed two cohorts of patients addicted to smoking at the time of focal brain damage (cohort 1 n = 67; cohort 2 n = 62). Lesion locations were mapped to a brain atlas and the brain network functionally connected to each lesion location was computed using human connectome data (n = 1,000). Associations with addiction remission were identified. Generalizability was assessed using an independent cohort of patients with focal brain damage and alcohol addiction risk scores (n = 186). Specificity was assessed through comparison to 37 other neuropsychological variables. Lesions disrupting smoking addiction occurred in many different brain locations but were characterized by a specific pattern of brain connectivity. This pattern involved positive connectivity to the dorsal cingulate, lateral prefrontal cortex, and insula and negative connectivity to the medial prefrontal and temporal cortex. This circuit was reproducible across independent lesion cohorts, associated with reduced alcohol addiction risk, and specific to addiction metrics. Hubs that best matched the connectivity profile for addiction remission were the paracingulate gyrus, left frontal operculum, and medial fronto-polar cortex. We conclude that brain lesions disrupting addiction map to a specific human brain circuit and that hubs in this circuit provide testable targets for therapeutic neuromodulation.


Assuntos
Alcoolismo , Lesões Encefálicas , Conectoma , Alcoolismo/patologia , Encéfalo/diagnóstico por imagem , Encéfalo/patologia , Lesões Encefálicas/patologia , Mapeamento Encefálico , Estudos de Coortes , Humanos , Imageamento por Ressonância Magnética
9.
J Gerontol A Biol Sci Med Sci ; 75(12): 2320-2325, 2020 11 13.
Artigo em Inglês | MEDLINE | ID: mdl-32877922

RESUMO

Neutrophil dysfunction has been described with age, appears exaggerated in infection, with altered phosphoinositol signaling a potential mechanism. However, functional aging is heterogeneous. Frailty is a negative health status and is more common in older adults. We hypothesized that neutrophil migration may be compromised in frailty, associated with the degree of frailty experienced by the older person. We compared measures of frailty, neutrophil function, and systemic inflammation in 40 young and 77 older community-dwelling adults in the United Kingdom. Systemic neutrophils exhibited an age-associated reduction in the accuracy of migration (chemotaxis) which was further blunted with frailty. The degree of migratory inaccuracy correlated with physical (adjusted hand grip strength) and cognitive (Stroop test) markers of frailty. Regression analysis demonstrated that age, Charlson comorbidity index, and frailty index were able to predict neutrophil chemotaxis. Reduced chemotaxis of neutrophils from frail adults could be reversed using selective PI3K inhibitors. Exposure of neutrophils from young adults to plasma from chronically inflamed frail older adults could not recapitulate the migratory deficit in vitro, and there were no relationships with systemic inflammation and neutrophil dysfunction. Frailty exaggerated the neutrophil deficits seen with advanced age but aspects of the frailty-associated deficit in neutrophil function are rescuable and thus potentially form a therapeutic target to improve outcomes from infection in older adults.


Assuntos
Quimiotaxia/imunologia , Fragilidade/imunologia , Neutrófilos/imunologia , Inibidores de Fosfoinositídeo-3 Quinase/uso terapêutico , Adulto , Idoso , Idoso de 80 Anos ou mais , Proteína C-Reativa/análise , Transtornos Cognitivos/diagnóstico , Citocinas/sangue , Feminino , Avaliação Geriátrica , Força da Mão , Humanos , Vida Independente , Elastase de Leucócito/sangue , Masculino , Pessoa de Meia-Idade , Reino Unido
10.
IEEE Trans Biomed Circuits Syst ; 12(6): 1230-1245, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30418885

RESUMO

Developing new tools to better understand disorders of the nervous system, with a goal to more effectively treat them, is an active area of bioelectronic medicine research. Future tools must be flexible and configurable, given the evolving understanding of both neuromodulation mechanisms and how to configure a system for optimal clinical outcomes. We describe a system, the Summit RC+S "neural coprocessor," that attempts to bring the capability and flexibility of a microprocessor to a prosthesis embedded within the nervous system. This paper describes the updated system architecture for the Summit RC+S system, the five custom integrated circuits required for bi-directional neural interfacing, the supporting firmware/software ecosystem, and the verification and validation activities to prepare for human implantation. Emphasis is placed on design changes motivated by experience with the CE-marked Activa PC+S research tool; specifically, enhancement of sense-stim performance for improved bi-directional communication to the nervous system, implementation of rechargeable technology to extend device longevity, and application of MICS-band telemetry for algorithm development and data management. The technology was validated in a chronic treatment paradigm for canines with naturally occurring epilepsy, including free ambulation in the home environment, which represents a typical use case for future human protocols.


Assuntos
Eletrodos Implantados , Doenças do Sistema Nervoso/fisiopatologia , Monitorização Neurofisiológica/instrumentação , Processamento de Sinais Assistido por Computador/instrumentação , Animais , Cães , Desenho de Equipamento , Ergonomia , Humanos , Doenças do Sistema Nervoso/terapia , Transdutores
11.
Exp Gerontol ; 105: 70-77, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29288715

RESUMO

Despite increasing longevity, many old people are not in good health. There has been an increase in the prevalence of age-associated multi-morbidity (two or more chronic conditions in the same person). Also, severe infections, such as pneumonia, remain significant causes of mortality and morbidity in this aging group. Many chronic health conditions share risk factors such as increasing age, smoking, a sedentary life style and being part of a lower socioeconomic group. However, despite this, multi-morbidities often co-occur more commonly than would be predicted. This has led to the hypothesis that they share common underlying mechanisms. This is an important concept, for if it were true, treatments could be devised which target these common pathways and improve a number of age-associated health conditions. Many chronic illnesses associated with multi-morbidity and severe infections are characterized by an abnormal and sustained inflammatory response, with neutrophils being key effector cells in the pathological process. Studies have described aberrant neutrophil functions across these conditions, and some have highlighted potential mechanisms for altered cell behaviours which appear shared across disease states. It has been suggested that altered functions may represent neutrophil "senescence". This review considers how and why neutrophil functions change as the cell ages, and how and why neutrophil functions change as the host ages in health and disease and discusses whether neutrophil functions could be targeted to improve health outcomes in older adults.


Assuntos
Imunossenescência/imunologia , Inflamação/imunologia , Neutrófilos/imunologia , Idoso , Humanos , Inibidores de Hidroximetilglutaril-CoA Redutases/uso terapêutico , Imunossenescência/efeitos dos fármacos , Inflamação/tratamento farmacológico , Neutrófilos/efeitos dos fármacos , Pneumonia/tratamento farmacológico , Pneumonia/imunologia , Sepse/tratamento farmacológico , Sepse/imunologia
12.
J Med Microbiol ; 62(Pt 5): 741-747, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23429695

RESUMO

Hypervirulent BI/NAP1/027 strains of Clostridium difficile have been associated with increased mortality of C. difficile infection (CDI). The emergence of highly fluoroquinolone (FLQ)-resistant BI/NAP1/027 strains suggests that FLQ exposure may be a risk factor for CDI development. However, the mechanism for this is not clear. We compared the effects of subinhibitory concentrations of ciprofloxacin on Toxin A and B gene expression and protein production in recent (strain 039) and historical (strain 5325) BI/NAP1/027 clinical isolates with high- and low-level ciprofloxacin resistance, respectively. In the highly ciprofloxacin-resistant isolate (strain 039), ciprofloxacin significantly and dose-dependently increased Toxin A gene expression and shifted its expression to earlier in its growth cycle; TcdB gene expression also increased but was less sensitive to low-dose ciprofloxacin. Maximal Toxin A/B production (4 ng ml(-1)) was increased twofold and occurred significantly earlier than in the untreated control. In strain 5325, ciprofloxacin at 0.25×MIC markedly increased both tcdA and tcdB expression but their temporal dynamics were unchanged. Maximal toxin production (250 ng ml(-1)) was reduced approximately threefold compared with that of the untreated control. These results demonstrate significant differences in ciprofloxacin-induced toxin gene expression and protein production among BI/NAP1/027 isolates, and offer a new paradigm for FLQ-associated CDI caused by recent, highly antibiotic-resistant strains.


Assuntos
Antibacterianos/farmacologia , Toxinas Bacterianas/metabolismo , Ciprofloxacina/farmacologia , Clostridioides difficile/efeitos dos fármacos , Exotoxinas/metabolismo , Regulação Bacteriana da Expressão Gênica/efeitos dos fármacos , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Toxinas Bacterianas/genética , Clostridioides difficile/metabolismo , Enterotoxinas/genética , Enterotoxinas/metabolismo , Exotoxinas/genética , Testes de Sensibilidade Microbiana
13.
Neurocrit Care ; 1(3): 385-90, 2004.
Artigo em Inglês | MEDLINE | ID: mdl-16174940

RESUMO

A common observation in closed head injuries is the contrecoup brain injury. As the in vivo brain is less dense than the cerebrospinal fluid (CSF), one hypothesis explaining this observation is that upon skull impact, the denser CSF moves toward the site of skull impact displacing the brain in the opposite direction, such that the initial impact of the brain parenchyma is at the contrecoup location. A simple model was developed consisting of a balloon filled with water of density 1.00 g/mL enclosed in a clear plastic jar containing salt water of density 1.04 g/mL, simulating the same relative densities of the CSF and brain. The initial movement of the balloon, modeling the brain, was toward the contrecoup location with subsequent movement toward the coup location. The pattern of brain injury in which the contrecoup injury is greater than the coup injury is a result of initial movement of the brain in the contrecoup location. During the process of closed head injury, the brain parenchyma is initially displaced away from the site of skull impact and toward the contrecoup site resulting in the more severe brain contusion.


Assuntos
Lesões Encefálicas/etiologia , Traumatismos Cranianos Fechados/complicações , Traumatismos Cranianos Fechados/fisiopatologia , Fenômenos Biomecânicos , Líquido Cefalorraquidiano/fisiologia , Desaceleração/efeitos adversos , Humanos , Modelos Neurológicos
14.
Curr Infect Dis Rep ; 5(3): 257-265, 2003 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-12760824

RESUMO

Cytomegalovirus (CMV) is a major cause of morbidity and mortality in AIDS patients. Epidemiologic studies indicate that until 10 years ago, nearly one half of HIV-infected patients eventually developed CMV end-organ disease, including chorioretinitis, esophagitis, colitis, pneumonia, and central nervous system disease. Since the introduction of highly active antiretroviral therapy (HAART) this incidence has declined dramatically. Nonetheless, patients still present with CMV disease and resistance or intolerance to HAART does develop, which may give rise to a resurgence of CMV syndromes in AIDS patients. Until recently, only intravenous ganciclovir and foscarnet were available for management of CMV infection. With the advent of additional agents, clinicians now face the challenge of optimizing therapy for individual patients. This paper reviews the most common clinical syndromes caused by CMV, the treatment options, as well as an approach to diagnosing and treating antiviral resistance.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA