RESUMO
Potent, selective, and cell active small molecule kinase inhibitors are useful tools to help unravel the complexities of kinase signaling. As the biological functions of individual kinases become better understood, they can become targets of drug discovery efforts. The small molecules used to shed light on function can also then serve as chemical starting points in these drug discovery efforts. The Nek family of kinases has received very little attention, as judged by number of citations in PubMed, yet they appear to play many key roles and have been implicated in disease. Here we present our work to identify high quality chemical starting points that have emerged due to the increased incidence of broad kinome screening. We anticipate that this analysis will allow the community to progress towards the generation of chemical probes and eventually drugs that target members of the Nek family.
RESUMO
We have prepared a novel series of 2-amino-4,6-diarylpyridines that function as ligands of estrogen receptor alpha (ERalpha) and estrogen receptor beta (ERbeta). These compounds bind to both ERalpha and ERbeta with a modest selectivity for the alpha subtype. The most potent of these analogues, compound 19, has a K(i)=20nM at ERalpha. These molecules represent a novel template for designing potentially useful ligands for the estrogen receptor.
Assuntos
Receptores de Estrogênio/metabolismo , Moduladores Seletivos de Receptor Estrogênico/síntese química , Moduladores Seletivos de Receptor Estrogênico/farmacologia , Bactérias/genética , Bactérias/metabolismo , Sítios de Ligação/fisiologia , Cristalografia por Raios X , Receptor alfa de Estrogênio , Receptor beta de Estrogênio , Humanos , Ligantes , Ligação Proteica/fisiologia , Piridinas/síntese química , Piridinas/metabolismo , Cloridrato de Raloxifeno/metabolismo , Sensibilidade e EspecificidadeRESUMO
The current interest in solid-phase organic synthesis has led to a renewed interest in a complementary technique in which solid supported reagents are used in solution phase chemistry. This technique obviates the need for attachment of the substrate to a solid-support, and enables the chemist to monitor the reactions using familiar analytical techniques. The purpose of this review is to increase awareness of the wide range of useful transformations which can be accomplished using solid-supported reagents.
Assuntos
Química Farmacêutica , Catálise , Oxirredução , PolímerosRESUMO
31P and 15N chemical shifts and 31P-15N bond lengths have been measured with solid-state NMR techniques in two inhibitors of thermolysin, carbobenzoxy-Glyp-L-Leu-L-Ala (ZGpLA) and carbobenzoxy-L-Phep-L-Leu-L-Ala (ZFpLA), both as free lithium salts and when bound to the enzyme. Binding of both inhibitors to thermolysin results in large changes in the 31P chemical shifts. These changes are more dramatic for the tighter binding inhibitor ZFpLA, where a approximately 20 ppm downfield movement of the 31P isotropic chemical shift (sigma iso) is observed. This shift is due to changes in the shift tensor elements sigma 11 and sigma 22, while sigma 33 remains essentially constant. We observed a similar pattern for ZGpLA, but only a approximately 5 ppm change occurs in sigma iso. The changes in the 15N chemical shifts for both inhibitors are small upon binding, amounting to downfield shifts of 2 and 4 ppm for ZGpLA and ZFpLA, respectively. This indicates that there are no changes in the protonation state of the 15N in either the ZFpLA- or the ZGpLA-thermolysin complex. NMR distance measurements yield a P-N bond length rP-N = 1.68 +/- 0.03 A for the tight binding inhibitor ZFpLA both in its free lithium salt form and in its thermolysin-ZFpLA complex, a distance that is much shorter than the 1.90-A distance reported by X-ray crystallography studies [Holden et al. (1987) Biochemistry 26, 8542-8553].(ABSTRACT TRUNCATED AT 250 WORDS)