Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
1.
Appl Environ Microbiol ; 90(2): e0165423, 2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38206028

RESUMO

Acinetobacter baumannii, an important pathogen known for its widespread antibiotic resistance, has been the focus of extensive research within its genus, primarily involving clinical isolates. Consequently, data on environmental A. baumannii and other Acinetobacter species remain limited. Here, we utilized Illumina and Nanopore sequencing to analyze the genomes of 10 Acinetobacter isolates representing 6 different species sourced from aquatic environments in South Australia. All 10 isolates were phylogenetically distinct compared to clinical and other non-clinical Acinetobacter strains, often tens of thousands of single-nucleotide polymorphisms from their nearest neighbors. Despite the genetic divergence, we identified pdif modules (sections of mobilized DNA) carrying clinically important antimicrobial resistance genes in species other than A. baumannii, including carbapenemase oxa58, tetracycline resistance gene tet(39), and macrolide resistance genes msr(E)-mph(E). These pdif modules were located on plasmids with high sequence identity to those circulating in globally distributed A. baumannii ST1 and ST2 clones. The environmental A. baumannii isolate characterized here (SAAb472; ST350) did not possess any native plasmids; however, it could capture two clinically important plasmids (pRAY and pACICU2) with high transfer frequencies. Furthermore, A. baumannii SAAb472 possessed virulence genes and a capsular polysaccharide type analogous to clinical strains. Our findings highlight the potential for environmental Acinetobacter species to acquire and disseminate clinically important antimicrobial resistance genes, underscoring the need for further research into the ecology and evolution of this important genus.IMPORTANCEAntimicrobial resistance (AMR) is a global threat to human, animal, and environmental health. Studying AMR in environmental bacteria is crucial to understand the emergence and dissemination of resistance genes and pathogens, and to identify potential reservoirs and transmission routes. This study provides novel insights into the genomic diversity and AMR potential of environmental Acinetobacter species. By comparing the genomes of aquatic Acinetobacter isolates with clinical and non-clinical strains, we revealed that they are highly divergent yet carry pdif modules that encode resistance to antibiotics commonly used in clinical settings. We also demonstrated that an environmental A. baumannii isolate can acquire clinically relevant plasmids and carries virulence factors similar to those of hospital-associated strains. These findings suggest that environmental Acinetobacter species may serve as reservoirs and vectors of clinically important genes. Consequently, further research is warranted to comprehensively understand the ecology and evolution of this genus.


Assuntos
Infecções por Acinetobacter , Acinetobacter baumannii , Anti-Infecciosos , Animais , Humanos , Antibacterianos/farmacologia , Farmacorresistência Bacteriana/genética , Infecções por Acinetobacter/microbiologia , Macrolídeos , Plasmídeos/genética , Acinetobacter baumannii/genética , Genômica , Testes de Sensibilidade Microbiana , Farmacorresistência Bacteriana Múltipla/genética
2.
Biol Rev Camb Philos Soc ; 99(2): 582-597, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38062990

RESUMO

Avian gut microbial communities are complex and play a fundamental role in regulating biological functions within an individual. Although it is well established that diet can influence the structure and composition of the gut microbiota, foraging behaviour may also play a critical, yet unexplored role in shaping the composition, dynamics, and adaptive potential of avian gut microbiota. In this review, we examine the potential influence of coprophagic foraging behaviour on the establishment and adaptability of wild avian gut microbiomes. Coprophagy involves the ingestion of faeces, sourced from either self (autocoprophagy), conspecific animals (allocoprophagy), or heterospecific animals. Much like faecal transplant therapy, coprophagy may (i) support the establishment of the gut microbiota of young precocial species, (ii) directly and indirectly provide nutritional and energetic requirements, and (iii) represent a mechanism by which birds can rapidly adapt the microbiota to changing environments and diets. However, in certain contexts, coprophagy may also pose risks to wild birds, and their microbiomes, through increased exposure to chemical pollutants, pathogenic microbes, and antibiotic-resistant microbes, with deleterious effects on host health and performance. Given the potentially far-reaching consequences of coprophagy for avian microbiomes, and the dearth of literature directly investigating these links, we have developed a predictive framework for directing future research to understand better when and why wild birds engage in distinct types of coprophagy, and the consequences of this foraging behaviour. There is a need for comprehensive investigation into the influence of coprophagy on avian gut microbiotas and its effects on host health and performance throughout ontogeny and across a range of environmental perturbations. Future behavioural studies combined with metagenomic approaches are needed to provide insights into the function of this poorly understood behaviour.


Assuntos
Microbioma Gastrointestinal , Animais , Coprofagia , Aves , Dieta/veterinária , Fezes
3.
Nat Rev Genet ; 25(2): 142-157, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37749210

RESUMO

Antimicrobial resistance (AMR) - the ability of microorganisms to adapt and survive under diverse chemical selection pressures - is influenced by complex interactions between humans, companion and food-producing animals, wildlife, insects and the environment. To understand and manage the threat posed to health (human, animal, plant and environmental) and security (food and water security and biosecurity), a multifaceted 'One Health' approach to AMR surveillance is required. Genomic technologies have enabled monitoring of the mobilization, persistence and abundance of AMR genes and mutations within and between microbial populations. Their adoption has also allowed source-tracing of AMR pathogens and modelling of AMR evolution and transmission. Here, we highlight recent advances in genomic AMR surveillance and the relative strengths of different technologies for AMR surveillance and research. We showcase recent insights derived from One Health genomic surveillance and consider the challenges to broader adoption both in developed and in lower- and middle-income countries.


Assuntos
Farmacorresistência Bacteriana , Saúde Única , Animais , Humanos , Farmacorresistência Bacteriana/genética , Antibacterianos/farmacologia , Genômica , Animais Selvagens
4.
Lett Appl Microbiol ; 76(12)2023 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-38066699

RESUMO

Effective extraction and detection of viral nucleic acids from sewage are fundamental components of a successful SARS-CoV-2 sewage surveillance programme. As there is no standard method employed in sewage surveillance, understanding the performance of different extraction kits in the recovery of SARS-CoV-2 and the impact that PCR inhibitors have on quantification is essential to minimize data discrepancies caused by sample extraction. Three commercial nucleic acid extraction kits: the RNeasy PowerSoil Total RNA Kit (PS), the RNeasy PowerMicrobiome Kit (PMB), and the MagMAX™ Microbiome Ultra Nucleic Acid Isolation Kit (MM), with minor modifications, were evaluated. Their efficacy in recovering viral ribonucleic acid and removal of PCR inhibitors was assessed using two South Australian wastewater matrices-one from a major metropolitan site and one from a regional centre. Both had SARS-CoV-2 present due to active COVID-19 cases in these communities. Overall, the MM kit had a higher recovery of SARS-CoV-2 from the samples tested, followed by PMB and PS. The PMB kit performance was strongly influenced by the sample matrix when compared to the MM kit. It is recommended to assess the performance of extraction kits using different local wastewater matrices to ensure the accuracy and reliability of monitoring results to avoid false reporting.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , COVID-19/diagnóstico , Reprodutibilidade dos Testes , Águas Residuárias , RNA Viral/genética , Austrália
5.
Chemosphere ; 331: 138850, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37146771

RESUMO

Pesticides play an important role in conventional agriculture by controlling pests, weeds, and plant diseases. However, repeated applications of pesticides may have long lasting effects on non-target microorganisms. Most studies have investigated the short-term effects of pesticides on soil microbial communities at the laboratory scale. Here, we assessed the ecotoxicological impact of fipronil (insecticide), propyzamide (herbicide) and flutriafol (fungicide) on (i) soil microbial enzymatic activities, (ii) potential nitrification, (iii) abundance of the fungal and bacterial community and key functional genes (nifH, amoA, chiA, cbhl and phosphatase) and (iii) diversity of bacteria, fungi, ammonia oxidizing bacteria (AOB) and archaea (AOA) after repeated pesticide applications in laboratory and field experiments. Our results showed that repeated applications of propyzamide and flutriafol affected the soil microbial community structure in the field and had significant inhibitory effects on enzymatic activities. The abundances of soil microbiota affected by pesticides recovered to levels similar to the control following a second application, suggesting that they might be able to recover from the pesticide effects. However, the persistent pesticide inhibitory effects on soil enzymatic activities suggests that the ability of the microbial community to cope with the repeated application was not accompanied by functional recovery. Overall, our results suggest that repeated pesticide applications may influence soil health and microbial functionalities and that more information should be collected to inform risk-based policy development.


Assuntos
Praguicidas , Solo , Solo/química , Microbiologia do Solo , Oxirredução , Bactérias/genética , Archaea/genética , Praguicidas/toxicidade , Nitrificação , Amônia , Filogenia
6.
J Environ Manage ; 320: 115819, 2022 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-35930884

RESUMO

Wastewater monitoring as a public health tool is well-established and the SARS-CoV-2 (COVID-19) pandemic has seen its widespread uptake. Given the significant potential of wastewater monitoring as a public health surveillance and decision support tool, it is important to understand what measures are required to allow the long-term benefits of wastewater monitoring to be fully realized, including how to establish and/or maintain public support. The potential for positive SARS-CoV-2 detections to trigger enforced, community-wide public health interventions (e.g., lockdowns and other impacts on civil liberties) further emphasises the need to better understand the role of public engagement in successful wastewater-based monitoring programs. This paper systematically reviews the processes of building and maintaining the social license to operate wastewater monitoring. We specifically explore the relationship between different stakeholder communities and highlight the information and actions that are required to establish a social license to operate and then prevent its loss. The paper adds to the literature on social license to operate by extending its application to new domains and offers a dynamic model of social license to help guide the agenda for researcher and practitioner communities.


Assuntos
COVID-19 , Doenças Transmissíveis , COVID-19/prevenção & controle , Controle de Doenças Transmissíveis , Humanos , Pandemias/prevenção & controle , SARS-CoV-2 , Águas Residuárias
7.
Chemosphere ; 307(Pt 2): 135820, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35944675

RESUMO

Pesticides are known to affect non-targeted soil microorganisms. Still, studies comparing the effect of multiple pesticides on a wide range of microbial endpoints associated with carbon cycling are scarce. Here, we employed fluorescence enzymatic assay and real-time PCR to evaluate the effect of 20 commercial pesticides, applied at their recommended dose and five times their recommended dose, on soil carbon cycling related enzymatic activities (α-1,4-glucosidase, ß-1,4-glucosidase, ß-d-cellobiohydrolase and ß-xylosidase), and on the absolute abundance of functional genes (cbhl and chiA), in three different South Australian agricultural soils. The effects on cellulolytic and chitinolytic microorganisms, and the total microbial community composition were determined using shotgun metagenomic sequencing in selected pesticide-treated and untreated samples. The application of insecticides significantly increased the cbhl and chiA genes absolute abundance in the acidic soil. At the community level, insecticide fipronil had the greatest stimulating effect on cellulolytic and chitinolytic microorganisms, followed by fungicide metalaxyl-M and insecticide imidacloprid. A shift towards a fungal dominated microbial community was observed in metalaxyl-M treated soil. Overall, our results suggest that the application of pesticides might affect the soil carbon cycle and may disrupt the formation of soil organic matter and structure stabilisation.


Assuntos
Fungicidas Industriais , Inseticidas , Praguicidas , Austrália , Carbono , Celulose 1,4-beta-Celobiosidase , Praguicidas/toxicidade , Solo/química , Microbiologia do Solo
8.
J Hazard Mater ; 435: 128943, 2022 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-35650718

RESUMO

Ultrafiltration (UF) was assessed at chemical, microbiological, genetical and toxicological level and in terms of removing specific antibiotic-related microcontaminants from urban wastewater. The UF capacity to remove various antibiotics (clarithromycin, erythromycin, ampicillin, ofloxacin, sulfamethoxazole, trimethoprim, and tetracycline; [A0] = 100 µg L-1) was optimised with respect to the feed recirculation rate (25-50%) and feed/transmembrane pressure (1.5-3/1.5-2.4 bar, respectively). Here, we tested the UF capacity to reduce the cultivable bacteria (faecal coliforms, total heterotrophs, Enterococci, Pseudomonas aeruginosa), enteric opportunistic pathogens, including antibiotic-resistant bacteria (ARB) and antibiotic-resistance genes (ARGs) load. Moreover, the toxicity towards Daphnia magna and three plant species was investigated. Upon optimisation of UF, the removal of antibiotics ranged from 19% for trimethoprim to 95% for clarithromycin. The concentration of cultivable faecal coliforms in the permeate was significantly reduced compared to the feed (P < 0.001), whereas all the bacterial species decreased by more than 3 logs. A similar pattern of reduction was observed for the ARGs (P < 0.001) and enteric opportunistic pathogens (~3-4 logs reduction). A nearly complete removal of the antibiotics was obtained by UF followed by granular activated carbon adsorption (contact time: 90 min), demonstrating the positive contribution of such combination to the abatement of chemical microcontaminants.


Assuntos
Antibacterianos , Águas Residuárias , Antagonistas de Receptores de Angiotensina/farmacologia , Inibidores da Enzima Conversora de Angiotensina/farmacologia , Antibacterianos/farmacologia , Bactérias/genética , Claritromicina , Trimetoprima , Ultrafiltração , Águas Residuárias/microbiologia
9.
Appl Environ Microbiol ; 88(13): e0064622, 2022 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-35708324

RESUMO

Comamonas spp. are Gram-negative bacteria that catabolize a wide range of organic and inorganic substrates. Comamonas spp. are abundant in aquatic and soil environments, including wastewater, and can cause opportunistic infections in humans. Because of their potential in wastewater bioaugmentation and bioremediation strategies, the identification of Comamonas species harboring genes encoding carbapenemases and other clinically important antibiotic resistance genes warrant further investigation. Here, we present an analysis of 39 whole-genome sequences comprising three Comamonas species from aquatic environments in South Australia that were recovered on media supplemented with carbapenems. The analysis includes a detailed description of 33 Comamonas denitrificans isolates, some of which carried chromosomally acquired blaGES-5, blaOXA, and aminoglycoside resistance (aadA) genes located on putative genomic islands (GIs). All blaGES-5- and blaOXA-containing GIs appear to be unique to this Australian collection of C. denitrificans. Notably, most open reading frames (ORFs) within the GIs, including all antimicrobial resistance (AMR) genes, had adjacent attC sites, indicating that these ORFs are mobile gene cassettes. One C. denitrificans isolate carried an IncP-1 plasmid with genes involved in xenobiotic degradation and response to oxidative stress. Our assessment of the sequences highlights the very distant nature of C. denitrificans to the other Comamonas species and its apparent disposition to acquire antimicrobial resistance genes on putative genomic islands. IMPORTANCE Antimicrobial resistance (AMR) poses a global public health threat, and the increase in resistance to "last-resort drugs," such as carbapenems, is alarming. Wastewater has been flagged as a hot spot for AMR evolution. Comamonas spp. are among the most common bacteria in wastewater and play a role in its bioaugmentation. While the ability of Comamonas species to catabolize a wide range of organic and inorganic substrates is well documented, some species are also opportunistic pathogens. However, data regarding AMR in Comamonas spp. are limited. Here, through the genomic analyses of 39 carbapenem-resistant Comamonas isolates, we make several key observations, including the identification of a subset of C. denitrificans isolates that harbored genomic islands encoding carbapenemase blaGES-5 or extended-spectrum ß-lactamase blaOXA alleles. Given the importance of Comamonas species in potential wastewater bioaugmentation and bioremediation strategies, as well as their status as emerging pathogens, the acquisition of critically important antibiotic resistance genes on genomic islands warrants future monitoring.


Assuntos
Carbapenêmicos , Comamonas , Antibacterianos/farmacologia , Austrália , Proteínas de Bactérias/genética , Carbapenêmicos/farmacologia , Comamonas/metabolismo , Genômica , Humanos , Testes de Sensibilidade Microbiana , Saúde Pública , Águas Residuárias/microbiologia , Água , beta-Lactamases/genética , beta-Lactamases/metabolismo
10.
J Hazard Mater ; 429: 128326, 2022 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-35101757

RESUMO

Strategies for remediation of per- and polyfluoroalkyl substances (PFAS) generally prioritise highly contaminated source areas. However, the mobility of PFAS in the environment often results in extensive low-level contamination of surface waters across broad areas. Constructed Floating Wetlands (CFWs) promote the growth of plants in buoyant structures where pollutants are assimilated into plant biomass. This study examined the hydroponic growth of Juncus krausii, Baumea articulata and Phragmites australis over a 28-day period for remediation of perfluorooctanoic acid (PFOA) and perfluorooctane sulfonic acid (PFOS) contaminated (0.2 µg/L to 30 µg/L) urban stormwater. With increasing PFOA and PFOS concentrations, accumulation in plant species increased although root and shoot distribution varied depending on PFAS functional group. Less PFOA than PFOS accumulated in plant roots (0.006-0.16 versus 0.008-0.68 µg/g), while more PFOA accumulated in the plant shoots (0.02-0.55 versus 0.01-0.16 µg/g) indicating translocation to upper plant portions. Phragmites australis accumulated the highest overall plant tissue concentrations of PFOA and PFOS. The NanoSIMS data demonstrated that PFAS associated with roots and shoots was absorbed and not just surface bound. These results illustrate that CFWs have the potential to be used to reduce PFAS contaminants in surface waters.


Assuntos
Ácidos Alcanossulfônicos , Fluorocarbonos , Poluentes Químicos da Água , Fluorocarbonos/análise , Plantas , Água , Poluentes Químicos da Água/análise , Áreas Alagadas
11.
Curr Res Microb Sci ; 3: 100083, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34988536

RESUMO

Elizabethkingia species are ubiquitous in aquatic environments, colonize water systems in healthcare settings and are emerging opportunistic pathogens with reports surfacing in 25 countries across six continents. Elizabethkingia infections are challenging to treat, and case fatality rates are high. Chromosomal bla B , bla GOB and bla CME genes encoding carbapenemases and cephalosporinases are unique to Elizabethkingia spp. and reports of concomitant resistance to aminoglycosides, fluoroquinolones and sulfamethoxazole-trimethoprim are known. Here, we characterized whole-genome sequences of 94 Elizabethkingia isolates carrying multiple wide-spectrum metallo-ß-lactamase (bla B and bla GOB) and extended-spectrum serine­ß-lactamase (bla CME) genes from Australian aquatic environments and performed comparative phylogenomic analyses against national clinical and international strains. qPCR was performed to quantify the levels of Elizabethkingia species in the source environments. Antibiotic MIC testing revealed significant resistance to carbapenems and cephalosporins but susceptibility to fluoroquinolones, tetracyclines and trimethoprim-sulfamethoxazole. Phylogenetics show that three environmental E. anophelis isolates are closely related to E. anophelis from Australian clinical isolates (∼36 SNPs), and a new species, E. umeracha sp. novel, was discovered. Genomic signatures provide insight into potentially shared origins and a capacity to transfer mobile genetic elements with both national and international isolates.

12.
Sci Total Environ ; 807(Pt 1): 150734, 2022 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-34606862

RESUMO

The extensive application of pesticides in agriculture raises concerns about their potential negative impact on soil microorganisms, being the key drivers of nutrient cycling. Most studies have investigated the effect of a single pesticide on a nutrient cycling in single soil type. We, for the first time, investigated the effect of 20 commercial pesticides with different mode of actions, applied at their recommended dose and five times their recommended dose, on nitrogen (N) microbial cycling in three different agricultural soils from southern Australian. Functional effects were determined by measuring soil enzymatic activities of ß-1,4-N-acetyliglucosaminidase (NAG) and l-leucine aminopeptidase (LAP), potential nitrification (PN), and the abundance of functional genes involved in N cycling (amoA and nifH). Effects on nitrifiers diversity were determined with amplicon sequencing. Overall, the pesticides effect on N microbial cycling was dose-independent and soil specific. The fungicides flutriafol and azoxystrobin, the herbicide chlorsulfuron and the insecticide fipronil induced a significant reduction in PN and ß-1,4-N-acetylglucosaminidase activity (P < 0.05) (NAG) in the alkaline loam soil with low organic carbon content i.e. a soil with properties which typically favors pesticide bioavailability and therefore potential toxicity. For the nitrifier community, the greatest pesticide effects were on the most dominant Nitrososphaeraceae (ammonia-oxidizing archaea; AOA) whose abundance increased significantly compared to the less dominant AOA and other nitrifiers. The inhibiting effects were more evident in the soil samples treated with fungicides. By testing multiple pesticides in a single study, our findings provide crucial information that can be used for pesticide hazard assessment.


Assuntos
Praguicidas , Microbiologia do Solo , Amônia , Archaea , Austrália , Nitrificação , Nitrogênio , Ciclo do Nitrogênio , Oxirredução , Praguicidas/toxicidade , Solo
13.
ACS Sens ; 6(12): 4283-4296, 2021 12 24.
Artigo em Inglês | MEDLINE | ID: mdl-34874700

RESUMO

The spread of antimicrobial resistance (AMR) is a rapidly growing threat to humankind on both regional and global scales. As countries worldwide prepare to embrace a One Health approach to AMR management, which is one that recognizes the interconnectivity between human, animal, and environmental health, increasing attention is being paid to identifying and monitoring key contributing factors and critical control points. Presently, AMR sensing technologies have significantly progressed phenotypic antimicrobial susceptibility testing (AST) and genotypic antimicrobial resistance gene (ARG) detection in human healthcare. For effective AMR management, an evolution of innovative sensing technologies is needed for tackling the unique challenges of interconnected AMR across various and different health domains. This review comprehensively discusses the modern state-of-play for innovative commercial and emerging AMR sensing technologies, including sequencing, microfluidic, and miniaturized point-of-need platforms. With a unique view toward the future of One Health, we also provide our perspectives and outlook on the constantly changing landscape of AMR sensing technologies beyond the human health domain.


Assuntos
Antibacterianos , Anti-Infecciosos , Animais , Antibacterianos/farmacologia , Anti-Infecciosos/farmacologia , Farmacorresistência Bacteriana , Saúde Ambiental , Humanos
14.
Microb Genom ; 7(12)2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34910614

RESUMO

Escherichia coli ST131 is a globally dispersed extraintestinal pathogenic E. coli lineage contributing significantly to hospital and community acquired urinary tract and bloodstream infections. Here we describe a detailed phylogenetic analysis of the whole genome sequences of 284 Australian ST131 E. coli isolates from diverse sources, including clinical, food and companion animals, wildlife and the environment. Our phylogeny and the results of single nucleotide polymorphism (SNP) analysis show the typical ST131 clade distribution with clades A, B and C clearly displayed, but no niche associations were observed. Indeed, interspecies relatedness was a feature of this study. Thirty-five isolates (29 of human and six of wild bird origin) from clade A (32 fimH41, 2 fimH89, 1 fimH141) were observed to differ by an average of 76 SNPs. Forty-five isolates from clade C1 from four sources formed a cluster with an average of 46 SNPs. Within this cluster, human sourced isolates differed by approximately 37 SNPs from isolates sourced from canines, approximately 50 SNPs from isolates from wild birds, and approximately 52 SNPs from isolates from wastewater. Many ST131 carried resistance genes to multiple antibiotic classes and while 41 (14 %) contained the complete class one integron-integrase intI1, 128 (45 %) isolates harboured a truncated intI1 (462-1014 bp), highlighting the ongoing evolution of this element. The module intI1-dfrA17-aadA5-qacEΔ1-sul1-ORF-chrA-padR-IS1600-mphR-mrx-mphA, conferring resistance to trimethoprim, aminoglycosides, quaternary ammonium compounds, sulphonamides, chromate and macrolides, was the most common structure. Most (73 %) Australian ST131 isolates carry at least one extended spectrum ß-lactamase gene, typically blaCTX-M-15 and blaCTX-M-27. Notably, dual parC-1aAB and gyrA-1AB fluoroquinolone resistant mutations, a unique feature of clade C ST131 isolates, were identified in some clade A isolates. The results of this study indicate that the the ST131 population in Australia carries diverse antimicrobial resistance genes and plasmid replicons and indicate cross-species movement of ST131 strains across diverse reservoirs.


Assuntos
Proteínas de Escherichia coli/genética , Escherichia coli/classificação , Polimorfismo de Nucleotídeo Único , Sequenciamento Completo do Genoma/métodos , Animais , Austrália , Aves , Cães , Escherichia coli/genética , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Filogenia
15.
Water Res ; 201: 117324, 2021 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-34242935

RESUMO

With two thirds of the global population living in areas affected by water scarcity, wastewater reuse is actively being implemented or explored by many nations. There is a need to better understand the efficacy of recycled water treatment plants (RWTPs) for removal of human opportunistic pathogens and antimicrobial resistant microorganisms. Here, we used a suite of probe-based multiplex and SYBR green real-time PCR assays to monitor enteric opportunistic pathogens (EOPs; Acinetobacter baumannii, Arcobacter butzlieri, Escherichia coli, Enterococcus faecalis, Klebsiella pneumoniae, Legionella spp., Listeria monocytogenes, Pseudomonas aeruginosa, Salmonella Enteritidis, Streptococcus spp.) and antimicrobial resistance genes (ARGs; qnrS, blaSHV, blaTEM, blaGES, blaKPC, blaIMI, blaSME, blaNDM, blaVIM, blaIMP, blaOXA-48-like, mcr-1 and mcr-3) of key concern from an antimicrobial resistance (AMR), waterborne and foodborne disease perspective. The class 1 integron-integrase gene (intl1) was quantified as a proxy for multi-drug resistance. EOPs, intl1 and ARGs absolute abundance (DNA and RNA) and metabolic activity (RNA) was assessed through three RWTPs with differing treatment trains. Our results indicate that RWTPs produced high quality recycled water for non-potable reuse by removing >95% of EOPs and ARGs, however, subpopulations of EOPs and ARGs survived disinfection and demonstrated potential to become actively growing members of the recycled water and distribution system microbiomes. The persistence of functional intl1 suggests that significant genetic recombination capacity remains in the recycled water, along with the likely presence of multi-drug resistant bacteria. Results provide new insights into the persistence and growth of EOPs, and prevalence and removal of ARGs in recycled water systems. These data will contribute towards the emerging evidence base of AMR risks in recycled water to inform quantitative risk-based policy development regarding water recycling schemes.


Assuntos
Antibacterianos , Água , Antibacterianos/farmacologia , Farmacorresistência Bacteriana , Farmacorresistência Bacteriana Múltipla , Genes Bacterianos , Humanos , Integrons , Águas Residuárias
16.
Food Microbiol ; 93: 103610, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-32912583

RESUMO

Pre-harvest sanitization of irrigation water has potential for reducing pathogen contamination of fresh produce. We compared the sanitizing effects of irrigation water containing neutral electrolyzed oxidizing water (EOW) or sodium hypochlorite (NaClO) on pre-harvest lettuce and baby spinach leaves artificially contaminated with a mixture of Escherichia coli, Salmonella Enteritidis and Listeria innocua (~1 × 108 colony-forming units/mL each resuspended in water containing 100 mg/L dissolved organic carbon, simulating a splash-back scenario from contaminated soil/manure). The microbial load and leaf quality were assessed over 7 days, and post-harvest shelf life evaluated for 10 days. Irrigation with water containing EOW or NaClO at 50 mg/L free chlorine significantly reduced the inoculated bacterial load by ≥ 1.5 log10, whereas tap water irrigation reduced the inoculated bacterial load by an average of 0.5 log10, when compared with untreated leaves. There were no visual effects of EOW or tap water irrigation on baby spinach or lettuce leaf surfaces pre- or post-harvest, whereas there were obvious negative effects of NaClO irrigation on leaf appearance for both plants, including severe necrotic zones and yellowing/browning of leaves. Therefore, EOW could serve as a viable alternative to chemical-based sanitizers for pre-harvest disinfection of minimally processed vegetables.


Assuntos
Descontaminação , Eletrólise , Microbiologia de Alimentos , Folhas de Planta/microbiologia , Água/química , Cloro , Desinfecção , Doenças Transmitidas por Alimentos/microbiologia , Lactuca/microbiologia , Listeria , Plantas/microbiologia , RNA Ribossômico 16S , Radioisótopos , Hipoclorito de Sódio/química , Spinacia oleracea/microbiologia
17.
Microorganisms ; 8(11)2020 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-33114277

RESUMO

Pseudomonas aeruginosa is an opportunistic pathogen displaying high intrinsic antimicrobial resistance and the ability to thrive in different ecological environments. In this study, the ability of P. aeruginosa to develop simultaneous resistance to multiple antibiotics and disinfectants in different natural niches were investigated using strains collected from clinical samples, veterinary samples, and wastewater. The correlation between biocide and antimicrobial resistance was determined by employing principal component analysis. Molecular mechanisms linking biocide and antimicrobial resistance were interrogated by determining gene expression using RT-qPCR and identifying a potential genetic determinant for co- and cross-resistance using whole-genome sequencing. A subpopulation of P. aeruginosa isolates belonging to three sequence types was resistant against the common preservative benzalkonium chloride and showed cross-resistance to fluoroquinolones, cephalosporins, aminoglycosides, and multidrug resistance. Of these, the epidemiological high-risk ST235 clone was the most abundant. The overexpression of the MexAB-OprM drug efflux pump resulting from amino acid mutations in regulators MexR, NalC, or NalD was the major contributing factor for cross-resistance that could be reversed by an efflux pump inhibitor. This is the first comparison of antibiotic-biocide cross-resistance in samples isolated from different ecological niches and serves as a confirmation of laboratory-based studies on biocide adapted isolates. The isolates from wastewater had a higher incidence of multidrug resistance and biocide-antibiotic cross-resistance than those from clinical and veterinary settings.

18.
Environ Int ; 144: 106035, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32835921

RESUMO

The World Health Organization Global Action Plan recommends integrated surveillance programs as crucial strategies for monitoring antibiotic resistance. Although several national surveillance programs are in place for clinical and veterinary settings, no such schemes exist for monitoring antibiotic-resistant bacteria in the environment. In this transnational study, we developed, validated, and tested a low-cost surveillance and easy to implement approach to evaluate antibiotic resistance in wastewater treatment plants (WWTPs) by targeting cefotaxime-resistant (CTX-R) coliforms as indicators. The rationale for this approach was: i) coliform quantification methods are internationally accepted as indicators of fecal contamination in recreational waters and are therefore routinely applied in analytical labs; ii) CTX-R coliforms are clinically relevant, associated with extended-spectrum ß-lactamases (ESBLs), and are rare in pristine environments. We analyzed 57 WWTPs in 22 countries across Europe, Asia, Africa, Australia, and North America. CTX-R coliforms were ubiquitous in raw sewage and their relative abundance varied significantly (<0.1% to 38.3%), being positively correlated (p < 0.001) with regional atmospheric temperatures. Although most WWTPs removed large proportions of CTX-R coliforms, loads over 103 colony-forming units per mL were occasionally observed in final effluents. We demonstrate that CTX-R coliform monitoring is a feasible and affordable approach to assess wastewater antibiotic resistance status.


Assuntos
Cefotaxima , Purificação da Água , Antibacterianos/farmacologia , Ásia , Austrália , Cefotaxima/farmacologia , Europa (Continente) , América do Norte , Inquéritos e Questionários , Águas Residuárias
19.
Ecotoxicol Environ Saf ; 196: 110576, 2020 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-32279000

RESUMO

Antimony (Sb) and its compounds are emerging priority pollutants which pose a serious threat to the environment. The aim of this study was to evaluate the short-term fate of antimonate added to different soils (S1 and S2) with respect to its mobility and impact on soil microbial communities and soil biochemical functioning. To this end, S1 (sandy clay loam, pH 8.2) and S2 (loamy coarse sand, pH 4.9) soils were spiked with 100 and 1000 mg Sb(V) kg-1 soil and left in contact for three months. Sequential extractions carried out after this contact time indicated a higher percentage of labile antimony in the Sb-spiked S1 soils than S2 (e.g. ~13 and 4% in S1 and S2 treated with 1000 mg Sb(V) kg-1 respectively), while the opposite was found for residual (hardly bioavailable) Sb. Also, a reduced number of culturable heterotrophic bacteria was recorded in Sb-spiked S1 soil (compared to the unpolluted S1), while an increased one was found in S2. Heterotrophic fungi followed the opposite trend. Actinomycetes and heat-resistant aerobic bacterial spores showed a variable trend depending on the soil type and Sb(V) treatment. The Biolog community level physiological profile indicated a reduced metabolic activity potential of microbial communities from the Sb-spiked S1 soils (e.g. <50% for Sb-1000 compared to the unpolluted S1), while an increase was recorded for those extracted from the Sb-spiked S2 soils (e.g. >2-fold for Sb-1000). The soil dehydrogenase activity followed the same trend. High-throughput 16S rRNA amplicon sequencing analysis revealed that Sb did not influence the bacterial α-diversity in both soils, while significantly affected the composition of the respective soil bacterial communities. Several phyla (e.g. Nitrosospira Nitrososphaeraceae, Adheribacter) were found positively correlated with the concentration of water-soluble Sb in soil. Overall, the results obtained suggest that the risk assessment in soils polluted with antimony should be a priority especially for alkaline soils where the high mobility of the anionic Sb(OH)6- species can pose, at least in the short-term, a serious threat for soil microbial abundance, diversity and functionality, soil fertility and eventually human health.


Assuntos
Antimônio/análise , Microbiota/efeitos dos fármacos , Microbiologia do Solo , Poluentes do Solo/análise , Solo/química , Antimônio/metabolismo , Antimônio/toxicidade , Disponibilidade Biológica , Humanos , Oxirredução , RNA Ribossômico 16S/genética , Poluentes do Solo/metabolismo , Poluentes do Solo/toxicidade
20.
Sci Rep ; 9(1): 19955, 2019 12 27.
Artigo em Inglês | MEDLINE | ID: mdl-31882630

RESUMO

There is increasing demand for safe and effective sanitizers for irrigation water disinfection to prevent transmission of foodborne pathogens to fresh produce. Here we compared the efficacy of pH-neutral electrolyzed oxidizing water (EOW), sodium hypochlorite (NaClO) and chlorine dioxide (ClO2) against single and mixed populations of E. coli, Listeria and Salmonella under a range of pH and organic matter content. EOW treatment of the mixed bacterial suspension resulted in a dose-dependent (<1 mg/L free chlorine), rapid (<2 min) and effective (4-6 Log10) reduction of the microbial load in water devoid of organic matter under the range of pH conditions tested (pH, 6.0, 7.0, 8.4 and 9.2). The efficacy of EOW containing 5 mg/L free chlorine was unaffected by increasing organic matter, and compared favourably with equivalent concentrations of NaClO and ClO2. EOW at 20 mg/L free chlorine was more effective than NaClO and ClO2 in reducing bacterial populations in the presence of high (20-100 mg/L) dissolved organic carbon, and no regrowth or metabolic activity was observed for EOW-treated bacteria at this concentration upon reculturing in rich media. Thus, EOW is as effective or more effective than other common chlorine-based sanitizers for pathogen reduction in contaminated water. EOW's other characteristics, such as neutral pH and ease of handling, indicate its suitability for fresh produce sanitation.


Assuntos
Desinfetantes/análise , Desinfetantes/química , Desinfecção/métodos , Antibacterianos/análise , Antibacterianos/química , Cloretos/química , Cloro/química , Compostos Clorados/química , Eletrólise/métodos , Escherichia coli O157/crescimento & desenvolvimento , Manipulação de Alimentos/métodos , Listeria/crescimento & desenvolvimento , Oxirredução , Óxidos/química , Salmonella/crescimento & desenvolvimento , Hipoclorito de Sódio/química , Água/química , Purificação da Água/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA