Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
1.
J Chem Ecol ; 50(3-4): 168-184, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38443712

RESUMO

Many plant species, particularly legumes, protect themselves with saponins. Previously, a correlation was observed between levels of oleanolic acid-derived saponins, such as hederagenin-derived compounds, in the legume Medicago truncatula and caterpillar deterrence. Using concentrations that reflect the foliar levels of hederagenin-type saponins, the sapogenin hederagenin was not toxic to 4th instar caterpillars of the cabbage looper Trichoplusia ni nor did it act as a feeding deterrent. Female caterpillars consumed more diet than males, presumably to obtain the additional nutrients required for oogenesis, and are, thus, exposed to higher hederagenin levels. When fed the hederagenin diet, male caterpillars expressed genes encoding trypsin-like proteins (LOC113500509, LOC113501951, LOC113501953, LOC113501966, LOC113501965, LOC113499659, LOC113501950, LOC113501948, LOC113501957, LOC113501962, LOC113497819, LOC113501946, LOC113503910) as well as stress-responsive (LOC113503484, LOC113505107) proteins and cytochrome P450 6B2-like (LOC113493761) at higher levels than females. In comparison, female caterpillars expressed higher levels of cytochrome P450 6B7-like (LOC113492289). Bioinformatic tools predict that cytochrome P450s could catalyze the oxygenation of hederagenin which would increase the hydrophilicity of the compound. Expression of a Major Facilitator Subfamily (MFS) transporter (LOC113492899) showed a hederagenin dose-dependent increase in gene expression suggesting that this transporter may be involved in sapogenin efflux. These sex-related differences in feeding and detoxification should be taken into consideration in insecticide evaluations to minimize pesticide resistance.


Assuntos
Mariposas , Ácido Oleanólico , Ácido Oleanólico/análogos & derivados , Saponinas , Transcriptoma , Animais , Feminino , Masculino , Saponinas/metabolismo , Saponinas/química , Ácido Oleanólico/metabolismo , Ácido Oleanólico/farmacologia , Ácido Oleanólico/química , Mariposas/efeitos dos fármacos , Mariposas/fisiologia , Mariposas/genética , Transcriptoma/efeitos dos fármacos , Larva/efeitos dos fármacos , Larva/genética , Caracteres Sexuais
2.
Can J Microbiol ; : 1-6, 2021 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-34516930

RESUMO

When nano-sized titanium dioxide (nano-TiO2) absorbs ultra-violet (UV-A) radiation, it produces reactive oxygen species that can be toxic to bacteria. We used the agronomically beneficial nitrogen-fixing bacterium Sinorhizobium meliloti strain 1021 as a model microorganism to detect nano-TiO2 toxicity. Sinorhizobium meliloti was exposed to aqueous dispersions of micrometer-sized TiO2 (micron-TiO2, 44 µm) or nanometer-sized TiO2 (nano-TiO2, 21 nm) at nominal concentrations of 0, 100, 300, 600, 900, and 1800 mg TiO2/L. There were fewer viable S. meliloti cells after exposure to nano-TiO2 under dark and UV-A light conditions. Nano-TiO2 was more toxic to S. meliloti with UV-A irradiation (100% mortality at 100 mg TiO2/L) than under dark conditions (100% mortality at 900 mg TiO2/L). Micron-TiO2 concentrations less than 300 mg TiO2/L had no effect on S. meliloti viability under dark or UV-A light conditions. Exposure to 600 mg/L or more of micron-TiO2 under UV-A light could also photo-kill S. meliloti cells (100% mortality). Further studies are needed to ascertain whether nano-TiO2 interferes with the growth of N2-fixing microorganisms in realistic agricultural environments.

3.
J Chem Ecol ; 43(7): 712-724, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28744732

RESUMO

Plant resistance mechanisms to insect herbivory can potentially be bred into crops as an important strategy for integrated pest management. Medicago truncatula ecotypes inoculated with the rhizobium Ensifer medicae (Sinorhizobium medica) WSM419 were screened for resistance to herbivory by caterpillars of the beet armyworm, Spodoptera exigua, through leaf and whole plant choice studies; TN1.11 and F83005.5 are identified as the least and most deterrent ecotypes, respectively. In response to caterpillar herbivory, both ecotypes mount a robust burst of plant defensive jasmonate phytohormones. Restriction of caterpillars to either of these ecotypes does not adversely affect pest performance. This argues for an antixenosis (deterrence) resistance mechanism associated with the F83005.5 ecotype. Unbiased metabolomic profiling identified strong ecotype-specific differences in metabolite profile, particularly in the content of oleanolic-derived saponins that may act as antifeedants. Compared to the more susceptible ecotype, F83005.5 has higher levels of oleanolic-type zanhic acid- and medicagenic acid-derived compounds. Together, these data support saponin-mediated deterrence as a resistance mechanism of the F83005.5 ecotype and implicates these compounds as potential antifeedants that could be used in agricultural sustainable pest management strategies.


Assuntos
Herbivoria , Medicago truncatula/fisiologia , Reguladores de Crescimento de Plantas/metabolismo , Saponinas/metabolismo , Spodoptera/fisiologia , Animais , Medicago truncatula/química , Metaboloma , Reguladores de Crescimento de Plantas/análise , Saponinas/análise
5.
Front Microbiol ; 4: 215, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23914185

RESUMO

Northern peatlands are important global C reservoirs, largely because of their slow rates of microbial C mineralization. Particularly in sites that are heavily influenced by anthropogenic disturbances, there is scant information about microbial ecology and whether or not microbial community structure influences greenhouse gas production. This work characterized communities of bacteria and archaea using terminal restriction fragment length polymorphism (T-RFLP) and sequence analysis of 16S rRNA and functional genes across eight natural, mined, or restored peatlands in two locations in eastern Canada. Correlations were explored among chemical properties of peat, bacterial and archaeal community structure, and carbon dioxide (CO2) and methane (CH4) production rates under oxic and anoxic conditions. Bacteria and archaea similar to those found in other peat soil environments were detected. In contrast to other reports, methanogen diversity was low in our study, with only 2 groups of known or suspected methanogens. Although mining and restoration affected substrate availability and microbial activity, these land-uses did not consistently affect bacterial or archaeal community composition. In fact, larger differences were observed between the two locations and between oxic and anoxic peat samples than between natural, mined, and restored sites, with anoxic samples characterized by less detectable bacterial diversity and stronger dominance by members of the phylum Acidobacteria. There were also no apparent strong linkages between prokaryote community structure and CH4 or CO2 production, suggesting that different organisms exhibit functional redundancy and/or that the same taxa function at very different rates when exposed to different peat substrates. In contrast to other earlier work focusing on fungal communities across similar mined and restored peatlands, bacterial and archaeal communities appeared to be more resistant or resilient to peat substrate changes brought about by these land uses.

6.
FEMS Microbiol Lett ; 321(2): 150-6, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21631577

RESUMO

We previously reported the construction of metagenomic libraries in the IncP cosmid vector pRK7813, enabling heterologous expression of these broad-host-range libraries in multiple bacterial hosts. Expressing these libraries in Sinorhizobium meliloti, we have successfully complemented associated phenotypes of polyhydroxyalkanoate synthesis mutants. DNA sequence analysis of three clones indicates that the complementing genes are homologous to, but substantially different from, known polyhydroxyalkanaote synthase-encoding genes. Thus we have demonstrated the ability to isolate diverse genes for polyhydroxyalkanaote synthesis by functional complementation of defined mutants. Such genes might be of use in the engineering of more efficient systems for the industrial production of bioplastics. The use of functional complementation will also provide a vehicle to probe the genetics of polyhydroxyalkanaote metabolism and its relation to carbon availability in complex microbial assemblages.


Assuntos
Aciltransferases/genética , Clonagem Molecular/métodos , Biblioteca Gênica , Metagenoma/genética , Microbiologia do Solo , Teste de Complementação Genética , Microscopia Eletrônica de Transmissão , Família Multigênica , Mutação , Fenótipo , Análise de Sequência de DNA , Homologia de Sequência , Sinorhizobium meliloti
7.
J Proteome Res ; 9(11): 5887-95, 2010 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-20857983

RESUMO

Though there is overlap, plant responses to caterpillar herbivory show distinct variations from mechanical wounding. In particular, effectors in caterpillar oral secretions modify wound-associated plant responses. Previous studies have focused on transcriptional and protein abundance differences in response to caterpillar herbivory. This study investigated Spodoptera exigua caterpillar-specific post-translational modification of Arabidopsis thaliana soluble leaf proteins by liquid chromatography/electrospray ionization/mass spectroscopy/mass spectroscopy (LC/ESI/MS/MS). Given that caterpillar labial saliva contains oxidoreductases, such as glucose oxidase, particular attention was paid to redox-associated modifications, such as the oxidation of protein cysteine residues. Caterpillar- and saliva-specific protein modifications were observed. Differential phosphorylation of the jasmonic acid biosynthetic enzyme, lipoxygenase 2, and a chaperonin protein is seen in plants fed upon by caterpillars with intact salivary secretions compared to herbivory by larvae with impaired labial salivary secretions. Often a systemic suppression of photosynthesis is associated with caterpillar herbivory. Of the five proteins modified in a caterpillar-specific manner (a transcription repressor, a DNA-repair enzyme, PS I P700, Rubisco and Rubisco activase), three are associated with photosynthesis. Oxidative modifications are observed, such as caterpillar-specific denitrosylation of Rubisco activase and chaperonin, cysteine oxidation of Rubisco, DNA-repair enzyme, and chaperonin and caterpillar-specific 4-oxo-2-nonenal modification of the DNA-repair enzyme.


Assuntos
Proteínas de Arabidopsis/metabolismo , Processamento de Proteína Pós-Traducional/fisiologia , Spodoptera/fisiologia , Animais , Proteínas de Arabidopsis/análise , Larva , Espectrometria de Massas , Oxirredução , Folhas de Planta/química , Proteínas de Plantas/metabolismo , Proteômica/métodos , Saliva/enzimologia
8.
Can J Microbiol ; 52(8): 786-97, 2006 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-16917538

RESUMO

Biofilms were cultivated on polycarbonate strips in rotating annular reactors using South Saskatchewan River water during the fall of 1999 and the fall of 2001. The reactors were supplemented with carbon (glucose), nitrogen (NH(4)Cl), phosphorus (KH(2)PO(4)), or combined nutrients (CNP), with or without hexadecane. The impact of these treatments on nitrification and on the exopolysaccharide composition of river biofilms was determined. The results showed that the biofilms had higher NH4(+) oxidation, NO3(-) production, and N2O production activities in fall 1999 than fall 2001 when grown with CNP but had higher activities in fall 2001 than fall 1999 when grown with individual nutrients. The exopolysaccharide amounts and proportions were generally higher in fall 1999 than fall 2001, as a consequence of the higher nutrient levels in the river water in the first year of this study. The addition of P and especially CNP stimulated NH4(+) oxidation by the biofilms, showing a P limitation in this river ecosystem. The presence of hexadecane negatively affected these activities and lowered the amounts of exopolysaccharides in CNP and P biofilms in fall 1999 but increased the biofilm activities and exopolysaccharide amounts in CNP biofilm in fall 2001. Antagonistic, synergistic, and independent effects between nutrients and hexadecane were also observed. This study demonstrated that the biofilm autotrophic nitrification activity in the South Saskatchewan River was limited by P, that this activity and the exopolysaccharide amounts and proportions were dependent on the nutrient concentrations in the river water, and suggested that exopolysaccharides may play a protective role for biofilm microorganisms against toxic pollutants.


Assuntos
Alcanos/metabolismo , Bactérias/metabolismo , Biofilmes , Nitrogênio/metabolismo , Rios/microbiologia , Bactérias/química , Bactérias/crescimento & desenvolvimento , Biofilmes/crescimento & desenvolvimento , Reatores Biológicos , Ecossistema , Poluentes Ambientais , Polissacarídeos Bacterianos/análise , Saskatchewan
9.
Appl Environ Microbiol ; 72(1): 384-91, 2006 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-16391068

RESUMO

The goal of this study was to initiate investigation of the genetics of bacterial poly-3-hydroxybutyrate (PHB) metabolism at the community level. We constructed metagenome libraries from activated sludge and soil microbial communities in the broad-host-range IncP cosmid pRK7813. Several unique clones were isolated from these libraries by functional heterologous complementation of a Sinorhizobium meliloti bdhA mutant, which is unable to grow on the PHB cycle intermediate D-3-hydroxybutyrate due to absence of the enzyme D-3-hydroxybutyrate dehydrogenase activity. Clones that conferred D-3-hydroxybutyrate utilization on Escherichia coli were also isolated. Although many of the S. meliloti bdhA mutant complementing clones restored D-3-hydroxybutyrate dehydrogenase activity to the mutant host, for some of the clones this activity was not detectable. This was also the case for almost all of the clones isolated in the E. coli selection. Further analysis was carried out on clones isolated in the S. meliloti complementation. Transposon mutagenesis to locate the complementing genes, followed by DNA sequence analysis of three of the genes, revealed coding sequences that were broadly divergent but lay within the diversity of known short-chain dehydrogenase/reductase encoding genes. In some cases, the amino acid sequence identity between pairs of deduced BdhA proteins was <35%, a level at which detection by nucleic acid hybridization based methods would probably not be successful.


Assuntos
Teste de Complementação Genética , Hidroxibutirato Desidrogenase/genética , Hidroxibutiratos/metabolismo , Mutação , Poliésteres/metabolismo , Esgotos/microbiologia , Microbiologia do Solo , Clonagem Molecular , Cytophaga/genética , Biblioteca Gênica , Bactérias Gram-Negativas/genética , Hidroxibutirato Desidrogenase/metabolismo , Dados de Sequência Molecular , Fenótipo , Plasmídeos , Proteobactérias/genética , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Sinorhizobium meliloti/enzimologia , Sinorhizobium meliloti/genética
10.
Water Environ Res ; 78(12): 2303-10, 2006 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-17243229

RESUMO

Unlike wastewater, pulp and paper mill effluents are generally severely deficient in bioavailable nitrogen and phosphorus. The influence of nitrogen and phosphorus limitations on steady-state or typical pulp and paper mill activated sludge floc properties and performance was studied using a bioreactor-fed synthetic raw mill effluent and seeded with mill activated sludge. Limitation of either nitrogen or phosphorus decreased growth, five-day biochemical oxygen demand, and suspended solids removal. Nitrogen limitation greatly enhanced activated sludge floc poly-beta3-hydroxybutyrate (PHB), but not carbohydrate or extracellular polymeric substances (EPS). In contrast, phosphorus limitation increased total floc carbohydrate and EPS, but not PHB. The flocs showed little ability to store either nitrogen or phosphorus. Nitrogen limitation, but not phosphorus limitation, produced much more negative net floc surface charge, increasing fines, while phosphorus limitation, but not nitrogen limitation, increased the floc bound water content and surface hydrophobicity and decreased fines.


Assuntos
Nitrogênio , Fósforo , Esgotos , Reatores Biológicos , Resíduos Industriais , Papel , Eliminação de Resíduos Líquidos
11.
Mol Plant Microbe Interact ; 17(12): 1318-27, 2004 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-15597737

RESUMO

To isolate Sinorhizobium meliloti mutants deficient in malate dehydrogenase (MDH) activity, random transposon Tn5tac1 insertion mutants were screened for conditional lethal phenotypes on complex medium. Tn5tac1 has an outward-oriented isopropyl-beta-D-thiogalactopyranoside (IPTG)-inducible promoter (Ptac). The insertion in strain Rm30049 was mapped to the mdh gene, which was found to lie directly upstream of the genes encoding succinyl-CoA synthetase (sucCD) and 2-oxoglutarate dehydrogenase (sucAB and lpdA). Rm30049 required IPTG for wild-type growth in complex media, and had a complex growth phenotype in minimal media with different carbon sources. The mdh:: Tn5tacl insertion eliminated MDH activity under all growth conditions, and activities of succinyl-CoA synthetase, 2-oxoglutarate dehydrogenase, and succinate dehydrogenase were affected by the addition of IPTG. Reverse-transcriptase polymerase chain reaction (RT-PCR) studies confirmed that expression from Ptac was induced by IPTG and leaky in its absence. Alfalfa plants inoculated with Rm30049 were chlorotic and stunted, with small white root nodules, and had shoot dry weight and percent-N content values similar to those of uninoculated plants. Cosmid clone pDS15 restored MDH activity to Rm30049, complemented both the mutant growth and symbiotic phenotypes, and was found to carry six complete (sdhB, mdh, sucCDAB) and two partial (IpdA, sdhA) tricarboxylic acid cycle genes.


Assuntos
Ciclo do Ácido Cítrico/genética , Elementos de DNA Transponíveis/genética , Malato Desidrogenase/genética , Sinorhizobium meliloti/enzimologia , Sinorhizobium meliloti/genética , Sequência de Aminoácidos , Regulação Bacteriana da Expressão Gênica , Malato Desidrogenase/química , Malato Desidrogenase/metabolismo , Medicago/microbiologia , Dados de Sequência Molecular , Mutação , Fenótipo , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Sinorhizobium meliloti/crescimento & desenvolvimento , Simbiose
12.
Appl Environ Microbiol ; 69(9): 5170-7, 2003 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-12957898

RESUMO

Biofilm communities cultivated in rotating annular bioreactors using water from the South Saskatchewan River were assessed for the effects of seasonal variations and nutrient (C, N, and P) additions. Confocal laser microscopy revealed that while control biofilms were consistently dominated by bacterial biomass, the addition of nutrients shifted biofilms of summer and fall water samples to phototrophic-dominated communities. In nutrient-amended biofilms, similar patterns of nitrification, denitrification, and hexadecane mineralization rates were observed for winter and spring biofilms; fall biofilms had the highest rates of nitrification and hexadecane mineralization, and summer biofilms had the highest rates of denitrification. Very low rates of all measured activities were detected in control biofilms (without nutrient addition) regardless of season. Nutrient addition caused large increases in hexadecane mineralization and denitrification rates but only modest increases, if any, in nitrification rates, depending upon the season. Generally, both alkB and nirK were more readily PCR amplified from nutrient-amended biofilms. Both genes were amplified from all samples except for nirK from the fall control biofilm. It appears that bacterial production in the South Saskatchewan River water is limited by the availability of nutrients and that biofilm activities and composition vary with nutrient availability and time of year.


Assuntos
Alcanos/farmacocinética , Bactérias/crescimento & desenvolvimento , Biofilmes , Biomassa , Nitrogênio/metabolismo , Bactérias/classificação , Bactérias/metabolismo , Biodegradação Ambiental , Água Doce , Cinética , Saskatchewan , Estações do Ano , Fatores de Tempo
13.
Fungal Genet Biol ; 39(3): 276-85, 2003 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-12892640

RESUMO

Stachybotrys elegans is a mycoparasite of the soilborne plant pathogenic fungus Rhizoctonia solani. The mycoparasitic activity of S. elegans is correlated with the production of cell wall degrading enzymes such as chitinases. This report details the cloning by RACE-PCR and characterization of a full-length cDNA clone, sechi44, that appears to encode an extracellular endochitinase. An analysis of the sechi44 sequence indicates that this gene contains a 1269-bp ORF and encodes a 423-aa polypeptide. The SECHI44 protein has a calculated molecular weight of 44.1kDa and pI of 5.53. Since the SECHI44 protein also appears to encode a signal peptide, an extracellular location for the corresponding protein is predicted. Comparison of SECHI44 sequence with known sequences of fungal endochitinases revealed that SECHI44 is grouped with endochitinases from other mycoparasites. Real-time quantitative RT-PCR analysis showed an elevated level of expression of sechi44 (21-fold) in chitin-rich (induced) as compared to no-carbon (non-induced) culture conditions. In dual culture, the temporal expression of sechi44 increased after 2 days of contact with R. solani, reaching a 10-fold increase after 9 days, followed by a decrease to basic expression level at 12 days. Interestingly, inhibition of sechi44 expression was observed when S. elegans hyphae were in close proximity with R. solani hyphae.


Assuntos
Quitinases/genética , Quitinases/metabolismo , Expressão Gênica , Análise de Sequência de DNA , Stachybotrys/enzimologia , Stachybotrys/genética , Sequência de Aminoácidos , Sequência de Bases , Quitina/metabolismo , Quitinases/química , Clonagem Molecular , DNA Complementar/química , Eletroforese em Gel de Ágar , Regulação Fúngica da Expressão Gênica , Genes Fúngicos , Dados de Sequência Molecular , Sinais Direcionadores de Proteínas , RNA Mensageiro/biossíntese , RNA Mensageiro/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa
14.
Can J Microbiol ; 48(5): 418-26, 2002 May.
Artigo em Inglês | MEDLINE | ID: mdl-12109881

RESUMO

After isolation from a pulp mill wastewater treatment facility, two yeast strains, designated SPT1 and SPT2, were characterized and used in the development of mediated biochemical oxygen demand (BOD) biosensors for wastewater. 18S rRNA gene sequence analysis revealed a one nucleotide difference between the sequence of SPT1 and those of Candida sojae and Candida viswanthii. While SPT2 had the highest overall homology to Pichia norvegensis, at only 73.5%, it is clearly an ascomycete, based on BLAST comparisons and phylogenetic analyses. Neighbor-joining dendrograms indicated that SPT1 clustered with several Candida spp., and that SPT2 clustered with Starmera spp., albeit as a very deep branch. Physiological tests, microscopic observations, and fatty acid analysis confirmed that SPT1 and SPT2 are novel yeast strains. Physiological tests also indicated that both strains had potential for use in mediated biosensors for estimation of BOD in wastewater. The lower detection limits of SPT1- and SPT2-based K3Fe(CN)6-mediated biosensors for a pulp-mill effluent were 2 and 1 mg BOD/L, respectively. Biosensor-response times for effluents from eight different pulp mills were in the range of 5 min. Reliability and sensitivity of the SPT1- and SPT2-based biosensors were good, but varied with the wastewater.


Assuntos
Ascomicetos/classificação , Técnicas Biossensoriais/métodos , Candida/classificação , Papel , Eliminação de Resíduos Líquidos , Microbiologia da Água , Ascomicetos/genética , Ascomicetos/crescimento & desenvolvimento , Candida/genética , Candida/crescimento & desenvolvimento , Meios de Cultura , DNA Ribossômico/análise , Eletrodos , Ferricianetos , Resíduos Industriais , Dados de Sequência Molecular , Fenótipo , Filogenia , RNA Ribossômico 18S/genética , Análise de Sequência de DNA
15.
Can J Microbiol ; 48(3): 230-8, 2002 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-11989767

RESUMO

Endophytic bacteria reside within plant tissues and have often been found to promote plant growth. Fourteen strains of putative endophytic bacteria, not including endosymbiotic Bradyrhizobium strains, were isolated from surface-sterilized soybean (Glycine max. (L.) Merr.) root nodules. These isolates were designated as non-Bradyrhizobium endophytic bacteria (NEB). Three isolates (NEB4, NEB5, and NEB17) were found to increase soybean weight when plants were co-inoculated with one of the isolates and Bradyrhizobium japonicum under nitrogen-free conditions, compared with plants inoculated with B. japonicum alone. In the absence of B. japonicum, these isolates neither nodulated soybean, nor did they affect soybean growth. All three isolates were Gram-positive spore-forming rods. While Biolog tests indicated that the three isolates belonged to the genus Bacillus, it was not possible to determine the species. Phylogenetic analysis of 16S rRNA gene hypervariant region sequences demonstrated that both NEB4 and NEB5 are Bacillus subtilis strains, and that NEB17 is a Bacillus thuringiensis strain.


Assuntos
Bacillus subtilis/isolamento & purificação , Bacillus thuringiensis/isolamento & purificação , Glycine max/crescimento & desenvolvimento , Glycine max/microbiologia , Raízes de Plantas/microbiologia , Bacillus subtilis/classificação , Bacillus subtilis/genética , Bacillus thuringiensis/classificação , Bacillus thuringiensis/genética , DNA Ribossômico/análise , Dados de Sequência Molecular , Fenótipo , Filogenia , Raízes de Plantas/crescimento & desenvolvimento , RNA Ribossômico 16S/genética , Análise de Sequência de DNA
16.
Microbiology (Reading) ; 143 ( Pt 5): 1639-1648, 1997 May.
Artigo em Inglês | MEDLINE | ID: mdl-9168612

RESUMO

The formation of phosphoenolpyruvate (PEP) is a major step in the gluconeogenic pathway in which tricarboxylic acid (TCA) cycle intermediates are converted to hexose sugars. In Rhizobium (now Sinorhizobium) meliloti this step is catalysed by the enzyme PEP carboxykinase (PCK) which converts oxaloacetate to PEP. R. meliloti Pck- mutants grow very poorly with TCA cycle intermediates as the sole source of carbon. Here, the isolation and mapping of suppressor mutations which allow Pck- mutants to grow on succinate and other TCA cycle intermediates is reported. Tn5 insertions which abolished the suppressor phenotype and mapped to the suppressor locus were located within the pod gene encoding pyruvate orthophosphate dikinase (PPDK). Strains carrying suppressor mutations had increased PPDK activity compared to the wild-type. The suppressor phenotype was dependent on the combined activities of malic enzyme and PPDK, which thus represent an alternative route for the formation of PEP in R. meliloti. PPDK activity was not required for symbiotic N2 fixation.


Assuntos
Proteínas de Bactérias/metabolismo , Piruvato Ortofosfato Diquinase/metabolismo , Sinorhizobium meliloti/enzimologia , Alelos , Mapeamento Cromossômico , Cromossomos Bacterianos/genética , Conjugação Genética , Elementos de DNA Transponíveis/genética , Genes Bacterianos , Genes Supressores , Gluconeogênese , Dados de Sequência Molecular , Mutagênese Insercional , Fixação de Nitrogênio , Fosfoenolpiruvato/metabolismo , Fosfoenolpiruvato Carboxiquinase (GTP)/metabolismo , Piruvato Ortofosfato Diquinase/genética , Sinorhizobium meliloti/genética , Sinorhizobium meliloti/crescimento & desenvolvimento
17.
Microbiology (Reading) ; 143 ( Pt 2): 489-498, 1997 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-9043124

RESUMO

The wild-type NAD(+)-dependent malic enzyme (dme) gene of Rhizobium (now Sinorhizobium) meliloti was cloned and localized to a 3.1 kb region isolated on the cosmid pTH69. This cosmid complemented the symbiotic nitrogen fixation (Fix-) phenotype of R. meliloti dme mutants. The dme gene was mapped by conjugation to between the cys-11 and leu-53 markers on the R. meliloti chromosome. beta-Galactosidase activities measured in bacterial strains carrying either dme-lacZ or tme-lacZ gene fusions (the tme gene encodes NADP(+)-dependent malic enzyme) indicated that the dme gene was expressed constitutively in free-living cells and in N2-fixing bacteroids whereas expression of the tme gene was repressed in bacteroids. The R. meliloti dme gene product (DME) was overexpressed in and partially purified from Escherichia coli. The properties of this enzyme, together with those of the NADP(+)-dependent malic enzyme (TME) partially purified from R. meliloti dme mutants, were determined. Acetyl-CoA inhibited DME but not TME activity. This result supports the hypothesis that DME, together with pyruvate dehydrogenase, forms a pathway in which malate is converted to acetyl-CoA.


Assuntos
Regulação Bacteriana da Expressão Gênica , Malato Desidrogenase/metabolismo , Fixação de Nitrogênio/genética , Sinorhizobium meliloti/enzimologia , Acetilcoenzima A/farmacologia , Cátions Bivalentes/farmacologia , Clonagem Molecular , Cosmídeos , Repressão Enzimática , Expressão Gênica , Genes Bacterianos , Teste de Complementação Genética , Cinética , Malato Desidrogenase/efeitos dos fármacos , Malato Desidrogenase/genética , Malato Desidrogenase/isolamento & purificação , Malatos/metabolismo , Mapeamento por Restrição , Sinorhizobium meliloti/genética , Simbiose
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA