Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Sci Rep ; 13(1): 7893, 2023 05 16.
Artigo em Inglês | MEDLINE | ID: mdl-37193703

RESUMO

Intestinal colonization with Klebsiella has been linked to necrotizing enterocolitis (NEC), but methods of analysis usually failed to discriminate Klebsiella species or strains. A novel ~ 2500-base amplicon (StrainID) that spans the 16S and 23S rRNA genes was used to generate amplicon sequence variant (ASV) fingerprints for Klebsiella oxytoca and Klebsiella pneumoniae species complexes (KoSC and KpSC, respectively) and co-occurring fecal bacterial strains from 10 preterm infants with NEC and 20 matched controls. Complementary approaches were used to identify cytotoxin-producing isolates of KoSC. Klebsiella species colonized most preterm infants, were more prevalent in NEC subjects versus controls, and replaced Escherichia in NEC subjects. Single KoSC or KpSC ASV fingerprinted strains dominated the gut microbiota, suggesting exclusionary Klebsiella competition for luminal resources. Enterococcus faecalis was co-dominant with KoSC but present infrequently with KpSC. Cytotoxin-producing KoSC members were identified in most NEC subjects and were less frequent in controls. Few Klebsiella strains were shared between subjects. We conclude that inter-species Klebsiella competition, within an environment of KoSC and E. faecalis cooperation, appears to be an important factor for the development of NEC. Preterm infants seem to acquire Klebsiella primarily through routes other than patient-to-patient transmission.


Assuntos
Enterocolite Necrosante , Doenças Fetais , Doenças do Recém-Nascido , Microbiota , Lactente , Feminino , Recém-Nascido , Humanos , Recém-Nascido Prematuro , Klebsiella/genética , Enterocolite Necrosante/microbiologia , RNA Ribossômico 16S/genética , Microbiota/genética , Fezes/microbiologia
2.
Microb Genom ; 8(3)2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35302439

RESUMO

A long-standing challenge in human microbiome research is achieving the taxonomic and functional resolution needed to generate testable hypotheses about the gut microbiota's impact on health and disease. With a growing number of live microbial interventions in clinical development, this challenge is renewed by a need to understand the pharmacokinetics and pharmacodynamics of therapeutic candidates. While short-read sequencing of the bacterial 16S rRNA gene has been the standard for microbiota profiling, recent improvements in the fidelity of long-read sequencing underscores the need for a re-evaluation of the value of distinct microbiome-sequencing approaches. We leveraged samples from participants enrolled in a phase 1b clinical trial of a novel live biotherapeutic product to perform a comparative analysis of short-read and long-read amplicon and metagenomic sequencing approaches to assess their utility for generating clinical microbiome data. Across all methods, overall community taxonomic profiles were comparable and relationships between samples were conserved. Comparison of ubiquitous short-read 16S rRNA amplicon profiling to long-read profiling of the 16S-ITS-23S rRNA amplicon showed that only the latter provided strain-level community resolution and insight into novel taxa. All methods identified an active ingredient strain in treated study participants, though detection confidence was higher for long-read methods. Read coverage from both metagenomic methods provided evidence of active-ingredient strain replication in some treated participants. Compared to short-read metagenomics, approximately twice the proportion of long reads were assigned functional annotations. Finally, compositionally similar bacterial metagenome-assembled genomes (MAGs) were recovered from short-read and long-read metagenomic methods, although a greater number and more complete MAGs were recovered from long reads. Despite higher costs, both amplicon and metagenomic long-read approaches yielded added microbiome data value in the form of higher confidence taxonomic and functional resolution and improved recovery of microbial genomes compared to traditional short-read methodologies.


Assuntos
Microbiota , Humanos , Metagenoma/genética , Metagenômica/métodos , Microbiota/genética , RNA Ribossômico 16S/genética , Análise de Sequência de DNA/métodos
3.
BMC Genomics ; 4(1): 21, 2003 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-12777185

RESUMO

BACKGROUND: Rolling circle amplification of ligated probes is a simple and sensitive means for genotyping directly from genomic DNA. SNPs and mutations are interrogated with open circle probes (OCP) that can be circularized by DNA ligase when the probe matches the genotype. An amplified detection signal is generated by exponential rolling circle amplification (ERCA) of the circularized probe. The low cost and scalability of ligation/ERCA genotyping makes it ideally suited for automated, high throughput methods. RESULTS: A retrospective study using human genomic DNA samples of known genotype was performed for four different clinically relevant mutations: Factor V Leiden, Factor II prothrombin, and two hemochromatosis mutations, C282Y and H63D. Greater than 99% accuracy was obtained genotyping genomic DNA samples from hundreds of different individuals. The combined process of ligation/ERCA was performed in a single tube and produced fluorescent signal directly from genomic DNA in less than an hour. In each assay, the probes for both normal and mutant alleles were combined in a single reaction. Multiple ERCA primers combined with a quenched-peptide nucleic acid (Q-PNA) fluorescent detection system greatly accellerated the appearance of signal. Probes designed with hairpin structures reduced misamplification. Genotyping accuracy was identical from either purified genomic DNA or genomic DNA generated using whole genome amplification (WGA). Fluorescent signal output was measured in real time and as an end point. CONCLUSIONS: Combining the optimal elements for ligation/ERCA genotyping has resulted in a highly accurate single tube assay for genotyping directly from genomic DNA samples. Accuracy exceeded 99 % for four probe sets targeting clinically relevant mutations. No genotypes were called incorrectly using either genomic DNA or whole genome amplified sample.


Assuntos
DNA/genética , Técnicas de Amplificação de Ácido Nucleico/métodos , Cromossomos Humanos Par 6/genética , Sondas de DNA/genética , DNA Circular/genética , Fator V/genética , Feminino , Genótipo , Antígenos HLA/genética , Humanos , Mutação , Conformação de Ácido Nucleico , Mutação Puntual/genética , Protrombina/genética , Estudos Retrospectivos
4.
Mol Endocrinol ; 16(4): 674-93, 2002 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-11923465

RESUMO

Estrogen signaling is mediated by ER alpha and -beta. ERs are converted from an inactive form to a transcriptionally active state through conformational changes induced by ligand and estrogen-responsive element (ERE) sequences. We show here that ER alpha and ER beta bind to an ERE independently from ER ligands. We found that although the binding affinity of ER beta for an ERE is 2-fold lower than that of ER alpha, both ERs use the same nucleotides for DNA contacts. We show that both EREs and ligands are independent modulators of ER conformation. Specifically, the ERE primarily determines the receptor-DNA affinity, whereas the structure of the ER ligand dictates the affinity of ER for particular cofactors. We found that the ligand-dependent cofactor transcriptional intermediary factor-2, through a distinct surface, also interacts with ER alpha preferentially and independently of ligand. The extent of interaction, however, is dependent upon the ER-ERE affinity. In transfected cells, ER alpha is more transcriptionally active than ER beta. The ERE sequence, however, determines the potency of gene induction when either ER subtype binds to an agonist. Antagonists prevent ERs from inducing transcription independently from ERE sequences. Thus, ERE- and ligand-induced structural changes are independent determinants for the recruitment of cofactors and transcriptional responses. The ability of ER alpha to differentially recruit a cofactor could contribute to ER subtype-specific gene responses.


Assuntos
Receptores de Estrogênio/fisiologia , Animais , Sequência de Bases , Células CHO , Linhagem Celular , Cricetinae , DNA/metabolismo , Eletroforese em Gel de Poliacrilamida , Receptor alfa de Estrogênio , Receptor beta de Estrogênio , Estrogênios/fisiologia , Células HeLa , Humanos , Ligantes , Masculino , Dados de Sequência Molecular , Conformação Proteica , Receptores de Estrogênio/química , Receptores de Estrogênio/genética , Transdução de Sinais , Ativação Transcricional
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA