Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
J Neurosci ; 44(23)2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38719446

RESUMO

Drugs of abuse cause changes in the prefrontal cortex (PFC) and associated regions that impair inhibitory control over drug-seeking. Breaking the contingencies between drug-associated cues and the delivery of the reward during extinction learning reduces relapse. Vagus nerve stimulation (VNS) has previously been shown to enhance extinction learning and reduce drug-seeking. Here we determined the effects of VNS-mediated release of brain-derived neurotrophic factor (BDNF) on extinction and cue-induced reinstatement in male rats trained to self-administer cocaine. Pairing 10 d of extinction training with VNS facilitated extinction and reduced drug-seeking behavior during reinstatement. Rats that received a single extinction session with VNS showed elevated BDNF levels in the medial PFC as determined via an enzyme-linked immunosorbent assay. Systemic blockade of tropomyosin receptor kinase B (TrkB) receptors during extinction, via the TrkB antagonist ANA-12, decreased the effects of VNS on extinction and reinstatement. Whole-cell recordings in brain slices showed that cocaine self-administration induced alterations in the ratio of AMPA and NMDA receptor-mediated currents in Layer 5 pyramidal neurons of the infralimbic cortex (IL). Pairing extinction with VNS reversed cocaine-induced changes in glutamatergic transmission by enhancing AMPAR currents, and this effect was blocked by ANA-12. Our study suggests that VNS consolidates the extinction of drug-seeking behavior by reversing drug-induced changes in synaptic AMPA receptors in the IL, and this effect is abolished by blocking TrkB receptors during extinction, highlighting a potential mechanism for the therapeutic effects of VNS in addiction.


Assuntos
Comportamento de Procura de Droga , Extinção Psicológica , Plasticidade Neuronal , Córtex Pré-Frontal , Ratos Sprague-Dawley , Receptor trkB , Estimulação do Nervo Vago , Animais , Masculino , Ratos , Estimulação do Nervo Vago/métodos , Comportamento de Procura de Droga/fisiologia , Comportamento de Procura de Droga/efeitos dos fármacos , Receptor trkB/metabolismo , Receptor trkB/antagonistas & inibidores , Plasticidade Neuronal/fisiologia , Plasticidade Neuronal/efeitos dos fármacos , Extinção Psicológica/fisiologia , Extinção Psicológica/efeitos dos fármacos , Córtex Pré-Frontal/fisiologia , Córtex Pré-Frontal/efeitos dos fármacos , Córtex Pré-Frontal/metabolismo , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Autoadministração , Cocaína/farmacologia , Cocaína/administração & dosagem
2.
bioRxiv ; 2024 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-38328140

RESUMO

Drugs of abuse cause changes in the prefrontal cortex (PFC) and associated regions that impair inhibitory control over drug-seeking. Breaking the contingencies between drug-associated cues and the delivery of the reward during extinction learning reduces relapse. Vagus nerve stimulation (VNS) has previously been shown to enhance extinction learning and reduce drug-seeking. Here we determined the effects of VNS-mediated release of brain-derived neurotrophic factor (BDNF) on extinction and cue-induced reinstatement in rats trained to self-administer cocaine. Pairing 10 days of extinction training with VNS facilitated extinction and reduced drug-seeking behavior during reinstatement. Rats that received a single extinction session with VNS showed elevated BDNF levels in the medial PFC as determined via an enzyme-linked immunosorbent assay (ELISA). Systemic blockade of Tropomyosin receptor kinase B (TrkB) receptors during extinction, via the TrkB antagonist ANA-12, decreased the effects of VNS on extinction and reinstatement. Whole-cell recordings in brain slices showed that cocaine self-administration induced alterations in the ratio of AMPA and NMDA receptor-mediated currents in layer 5 pyramidal neurons of the infralimbic cortex (IL). Pairing extinction with VNS reversed cocaine-induced changes in glutamatergic transmission by enhancing AMPAR currents, and this effect was blocked by ANA-12. Our study suggests that VNS consolidates extinction of drug-seeking behavior by reversing drug-induced changes in synaptic AMPA receptors in the IL, and this effect is abolished by blocking TrkB receptors during extinction, highlighting a potential mechanism for the therapeutic effects of VNS in addiction.

3.
Brain Sci ; 12(9)2022 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-36138873

RESUMO

Vagus nerve stimulation (VNS) causes the release of several neuromodulators, leading to cortical activation and deactivation. The resulting preparatory cortical plasticity can be used to increase learning and memory in both rats and humans. The effects of VNS on cognition have mostly been studied either in animal models of different pathologies, and/or after extended VNS. Considerably less is known about the effects of acute VNS. Here, we examined the effects of acute VNS on short-term memory and cognitive flexibility in naïve rats, using three cognitive tasks that require comparatively brief (single session) training periods. In all tasks, VNS was delivered immediately before or during the testing phase. We used a rule-shifting task to test cognitive flexibility, a novel object recognition task to measure short-term object memory, and a delayed spontaneous alternation task to measure spatial short-term memory. We also analyzed exploratory behavior in an elevated plus maze to determine the effects of acute VNS on anxiety. Our results indicate that acute VNS can improve memory and cognitive flexibility relative to Sham-stimulation, and these effects are independent of unspecific VNS-induced changes in locomotion or anxiety.

4.
J Neurosci ; 42(10): 1930-1944, 2022 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-35058371

RESUMO

We aimed to investigate a sexually dimorphic role of calcitonin gene-related peptide (CGRP) in rodent models of pain. Based on findings in migraine where CGRP has a preferential pain-promoting effect in female rodents, we hypothesized that CGRP antagonists and antibodies would attenuate pain sensitization more efficaciously in female than male mice and rats. In hyperalgesic priming induced by activation of interleukin 6 signaling, CGRP receptor antagonists olcegepant and CGRP8-37 both given intrathecally, blocked, and reversed hyperalgesic priming only in females. A monoclonal antibody against CGRP, given systemically, blocked priming specifically in female rodents but failed to reverse it. In the spared nerve injury model, there was a transient effect of both CGRP antagonists, given intrathecally, on mechanical hypersensitivity in female mice only. Consistent with these findings, intrathecally applied CGRP caused a long-lasting, dose-dependent mechanical hypersensitivity in female mice but more transient effects in males. This CGRP-induced mechanical hypersensitivity was reversed by olcegepant and the KCC2 enhancer CLP257, suggesting a role for anionic plasticity in the dorsal horn in the pain-promoting effects of CGRP in females. In spinal dorsal horn slices, CGRP shifted GABAA reversal potentials to significantly more positive values, but, again, only in female mice. Therefore, CGRP may regulate KCC2 expression and/or activity downstream of CGRP receptors specifically in females. However, KCC2 hypofunction promotes mechanical pain hypersensitivity in both sexes because CLP257 alleviated hyperalgesic priming in male and female mice. We conclude that CGRP promotes pain plasticity in female rodents but has a limited impact in males.SIGNIFICANCE STATEMENT The majority of patients impacted by chronic pain are women. Mechanistic studies in rodents are creating a clear picture that molecular events promoting chronic pain are different in male and female animals. We sought to build on evidence showing that CGRP is a more potent and efficacious promoter of headache in female than in male rodents. To test this, we used hyperalgesic priming and the spared nerve injury neuropathic pain models in mice. Our findings show a clear sex dimorphism wherein CGRP promotes pain in female but not male mice, likely via a centrally mediated mechanism of action. Our work suggests that CGRP receptor antagonists could be tested for efficacy in women for a broader variety of pain conditions.


Assuntos
Dor Crônica , Simportadores , Animais , Peptídeo Relacionado com Gene de Calcitonina/metabolismo , Antagonistas do Receptor do Peptídeo Relacionado ao Gene de Calcitonina/efeitos adversos , Feminino , Humanos , Hiperalgesia/metabolismo , Masculino , Camundongos , Ratos , Receptores de Peptídeo Relacionado com o Gene de Calcitonina/metabolismo , Roedores
5.
Neurobiol Aging ; 98: 63-77, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33254080

RESUMO

Synaptic failure underlies cognitive impairment in Alzheimer's disease (AD). Cumulative evidence suggests a strong link between mitochondrial dysfunction and synaptic deficits in AD. We previously found that oligomycin-sensitivity-conferring protein (OSCP) dysfunction produces pronounced neuronal mitochondrial defects in AD brains and a mouse model of AD pathology (5xFAD mice). Here, we prevented OSCP dysfunction by overexpressing OSCP in 5xFAD mouse neurons in vivo (Thy-1 OSCP/5xFAD mice). This approach protected OSCP expression and reduced interaction of amyloid-beta (Aß) with membrane-bound OSCP. OSCP overexpression also alleviated F1Fo ATP synthase deregulation and preserved mitochondrial function. Moreover, OSCP modulation conferred resistance to Aß-mediated defects in axonal mitochondrial dynamics and motility. Consistent with preserved neuronal mitochondrial function, OSCP overexpression ameliorated synaptic injury in 5xFAD mice as demonstrated by preserved synaptic density, reduced complement-dependent synapse elimination, and improved synaptic transmission, leading to preserved spatial learning and memory. Taken together, our findings show the consequences of OSCP dysfunction in the development of synaptic stress in AD-related conditions and implicate OSCP modulation as a potential therapeutic strategy.


Assuntos
Doença de Alzheimer/etiologia , Mitocôndrias/genética , ATPases Mitocondriais Próton-Translocadoras/fisiologia , Transmissão Sináptica/genética , Doença de Alzheimer/genética , Doença de Alzheimer/psicologia , Doença de Alzheimer/terapia , Peptídeos beta-Amiloides/metabolismo , Animais , Modelos Animais de Doenças , Expressão Gênica , Memória , Camundongos Transgênicos , Mitocôndrias/metabolismo , Dinâmica Mitocondrial/genética , ATPases Mitocondriais Próton-Translocadoras/genética , ATPases Mitocondriais Próton-Translocadoras/metabolismo , Terapia de Alvo Molecular , Neurônios/metabolismo , Aprendizagem Espacial
6.
Sci Transl Med ; 11(505)2019 08 14.
Artigo em Inglês | MEDLINE | ID: mdl-31413143

RESUMO

Hippocampal lesions are a defining pathology of Alzheimer's disease (AD). However, the molecular mechanisms that underlie hippocampal synaptic injury in AD have not been fully elucidated. Current therapeutic efforts for AD treatment are not effective in correcting hippocampal synaptic deficits. Growth hormone secretagogue receptor 1α (GHSR1α) is critical for hippocampal synaptic physiology. Here, we report that GHSR1α interaction with ß-amyloid (Aß) suppresses GHSR1α activation, leading to compromised GHSR1α regulation of dopamine receptor D1 (DRD1) in the hippocampus from patients with AD. The simultaneous application of the selective GHSR1α agonist MK0677 with the selective DRD1 agonist SKF81297 rescued Ghsr1α function from Aß inhibition, mitigating hippocampal synaptic injury and improving spatial memory in an AD mouse model. Our data reveal a mechanism of hippocampal vulnerability in AD and suggest that a combined activation of GHSR1α and DRD1 may be a promising approach for treating AD.


Assuntos
Doença de Alzheimer/metabolismo , Hipocampo/metabolismo , Receptores de Dopamina D1/metabolismo , Receptores de Grelina/metabolismo , Peptídeos beta-Amiloides/metabolismo , Animais , Feminino , Células HEK293 , Humanos , Masculino , Camundongos , Ligação Proteica , Transdução de Sinais/genética , Transdução de Sinais/fisiologia
7.
Brain Stimul ; 12(6): 1448-1455, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31289015

RESUMO

BACKGROUND: Drug use causes the formation of strong cue/reward associations which persist long after cessation of drug-taking and contribute to the long-term risk of relapse. Extinguishing these associations may reduce cue-induced craving and relapse. Previously, we found that pairing vagus nerve stimulation (VNS) with extinction of cocaine self-administration reduces cue-induced reinstatement; however, it remains unclear whether this was primarily caused by extinguishing the context, the instrumental response, or both. OBJECTIVE: Hypothesis: We hypothesized that VNS can facilitate the extinction of both contextual cues and instrumental responding. METHODS: Extinction of context was first tested using Pavlovian conditioned place preference (CPP). Next, the impact of VNS on the extinction of instrumental responding was assessed under ABA and AAA context conditions. In each extinction context separate groups of rats were either provided the opportunity to perform the instrumental response, or the levers were retracted for the duration of extinction training. Reinstatement was induced by reintroduction of the conditioned stimuli and/or the drug-paired context. Data were analyzed using one-way or two-way repeated measures ANOVAs. RESULTS: VNS during extinction reduced reinstatement of CPP. VNS also reduced cue- and context-induced reinstatement of the instrumental response under both AAA and ABA conditions. The subjects' ability to engage with the lever during extinction was crucial for this effect. P values < 0.05 were considered significant. CONCLUSIONS: Craving occurs in response to a range of conditioned stimuli and contexts; VNS may improve outcomes of behavioral therapy by facilitating extinction of both an instrumental response and/or contextual cues.


Assuntos
Cocaína/administração & dosagem , Condicionamento Clássico/fisiologia , Fissura/fisiologia , Extinção Psicológica/fisiologia , Estimulação do Nervo Vago/métodos , Animais , Condicionamento Clássico/efeitos dos fármacos , Condicionamento Operante/efeitos dos fármacos , Condicionamento Operante/fisiologia , Fissura/efeitos dos fármacos , Sinais (Psicologia) , Masculino , Ratos , Ratos Sprague-Dawley , Recompensa , Autoadministração , Estimulação do Nervo Vago/tendências
8.
eNeuro ; 4(4)2017.
Artigo em Inglês | MEDLINE | ID: mdl-28819639

RESUMO

Glutamate theories of schizophrenia suggest that the disease is associated with a loss of NMDA receptors, specifically on GABAergic parvalbumin-expressing interneurons (PVIs), leading to changes in the excitation-inhibition balance in the prefrontal cortex (PFC). Oxidative stress contributes to the loss of PVI and the development of schizophrenia. Here, we investigated whether the glutathione precursor N-acetyl cysteine (NAC) can prevent changes in synaptic transmission at pyramidal cells and PVIs that result from developmental NMDAR blockade and how these changes are related to mitochondrial dysfunction in the PFCs of mice. Perinatal treatment with ketamine induced persistent changes in the reduced glutathione/oxidized glutathione (glutathione disulfide) ratio in the medial PFC, indicating long-lasting increases in oxidative stress. Perinatal ketamine treatment also reduced parvalbumin expression, and it induced a decline in mitochondrial membrane potential, as well as elevations in mitochondrial superoxide levels. At the level of synaptic function ketamine reduced inhibition onto layer 2/3 pyramidal cells and increased excitatory drive onto PVI, indicating long-lasting disruptions in the excitation-inhibition balance. These changes were accompanied by layer-specific alterations in NMDAR function in PVIs. All of these changes were mitigated by coadministration of NAC. In addition, NAC given only during late adolescence was also able to restore normal mitochondria function and inhibition at pyramidal cells. These results show that ketamine-induced alterations in PFC physiology correlate with cell type-specific changes in mitochondria function. The ability of NAC to prevent or restore these changes supports the usefulness of antioxidant supplementation in the treatment of schizophrenia.


Assuntos
Acetilcisteína/farmacologia , Antioxidantes/uso terapêutico , Mitocôndrias/efeitos dos fármacos , Receptores de N-Metil-D-Aspartato/metabolismo , Esquizofrenia/complicações , Sinapses/efeitos dos fármacos , Animais , Animais Recém-Nascidos , Modelos Animais de Doenças , Agonistas de Aminoácidos Excitatórios/farmacologia , Potenciais Pós-Sinápticos Excitadores/efeitos dos fármacos , Potenciais Pós-Sinápticos Excitadores/genética , Glutamato Descarboxilase/genética , Glutamato Descarboxilase/metabolismo , Glutationa/metabolismo , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Masculino , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Camundongos , Camundongos Transgênicos , Mitocôndrias/metabolismo , Parvalbuminas/metabolismo , Esquizofrenia/genética , Superóxidos/metabolismo
9.
Front Behav Neurosci ; 11: 106, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28634445

RESUMO

Alterations of the normal redox state can be found in all stages of schizophrenia, suggesting a key role for oxidative stress in the etiology and maintenance of the disease. Pharmacological blockade of N-methyl-D-aspartic acid (NMDA) receptors can disrupt natural antioxidant defense systems and induce schizophrenia-like behaviors in animals and healthy human subjects. Perinatal administration of the NMDA receptor (NMDAR) antagonist ketamine produces persistent behavioral deficits in adult mice which mimic a range of positive, negative, and cognitive symptoms that characterize schizophrenia. Here we tested whether antioxidant treatment with the glutathione (GSH) precursor N-acetyl-cysteine (NAC) can prevent the development of these behavioral deficits. On postnatal days (PND) 7, 9 and 11, we treated mice with subanesthetic doses (30 mg/kg) of ketamine or saline. Two groups (either ketamine or saline treated) also received NAC throughout development. In adult animals (PND 70-120) we then assessed behavioral alterations in a battery of cognitive and psychomotor tasks. Ketamine-treated animals showed deficits in a task of cognitive flexibility, abnormal patterns of spontaneous alternation, deficits in novel-object recognition, as well as social interaction. Developmental ketamine treatment also induced behavioral stereotypy in response to an acute amphetamine challenge, and it impaired sensorimotor gating, measured as reduced prepulse inhibition (PPI) of the startle response. All of these behavioral abnormalities were either prevented or strongly ameliorated by NAC co-treatment. These results suggest that oxidative stress is a major factor for the development of the ketamine-induced behavioral dysfunctions, and that restoring oxidative balance during the prodromal stage of schizophrenia might be able to ameliorate the development of several major symptoms of the disease.

10.
Behav Brain Res ; 282: 165-75, 2015 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-25591475

RESUMO

Dysfunctions in the GABAergic system are considered a core feature of schizophrenia. Pharmacological blockade of NMDA receptors (NMDAR), or their genetic ablation in parvalbumin (PV)-expressing GABAergic interneurons can induce schizophrenia-like behavior in animals. NMDAR-mediated currents shape the maturation of GABAergic interneurons during a critical period of development, making transient blockade of NMDARs during this period an attractive model for the developmental changes that occur in the course of schizophrenia's pathophysiology. Here, we examined whether developmental administration of the non-competitive NMDAR antagonist ketamine results in persistent deficits in PFC-dependent behaviors in adult animals. Mice received injections of ketamine (30mg/kg) on postnatal days (PND) 7, 9 and 11, and then tested on a battery of behavioral experiments aimed to mimic major symptoms of schizophrenia in adulthood (between PND 90 and 120). Ketamine treatment reduced the number of cells that expressed PV in the PFC by ∼60% as previously described. Ketamine affected performance in an attentional set-shifting task, impairing the ability of the animals to perform an extradimensional shift to acquire a new strategy. Ketamine-treated animals showed deficits in latent inhibition, novel-object recognition and social novelty detection compared to their SAL-treated littermates. These deficits were not a result of generalized anxiety, as both groups performed comparably on an elevated plus maze. Ketamine treatment did not cause changes in amphetamine-induced hyperlocomotion that are often taken as measures for the positive-like symptoms of the disorder. Thus, ketamine administration during development appears to be a useful model for inducing cognitive and negative symptoms of schizophrenia.


Assuntos
Sintomas Comportamentais/psicologia , Antagonistas de Aminoácidos Excitatórios/farmacologia , Ketamina/farmacologia , Parvalbuminas/metabolismo , Córtex Pré-Frontal/metabolismo , Esquizofrenia/metabolismo , Animais , Comportamento Animal/efeitos dos fármacos , Sintomas Comportamentais/induzido quimicamente , Modelos Animais de Doenças , Antagonistas de Aminoácidos Excitatórios/administração & dosagem , Ketamina/administração & dosagem , Masculino , Camundongos , Camundongos Endogâmicos , Córtex Pré-Frontal/efeitos dos fármacos , Receptores de N-Metil-D-Aspartato/antagonistas & inibidores , Esquizofrenia/induzido quimicamente
11.
Artigo em Inglês | MEDLINE | ID: mdl-15856131

RESUMO

OBJECTIVE: To determine if women with anterior support stages 0 or I by pelvic organ prolapse quantification (POP-Q) system require Q-tip testing to assess urethral mobility. METHODS: A prospective study of 134 women presenting for urogynecologic evaluation were examined and assigned stages of anterior wall support according to the POP-Q system. A Q-tip test was performed and urethral hypermobility was defined as a straining angle > or =30 degrees. The Spearman correlation coefficient was used to assess degree of correlation between POP-Q point Aa position and Q-tip values. RESULTS: The correlation coefficient between point Aa position and Q-tip angle was r = 0.787 (P < 0.001). Urethral hypermobility was noted in 91% of stage I and 100% of stage II-IV patients. The positive predictive value of Q-tip angle > or =30 degrees in stage I-IV prolapse was 99%. CONCLUSION: The POP-Q system is highly predictive of straining urethral angle in all stages of prolapse.


Assuntos
Uretra/fisiopatologia , Incontinência Urinária/diagnóstico , Prolapso Uterino/diagnóstico , Adulto , Idoso , Idoso de 80 Anos ou mais , Feminino , Humanos , Pessoa de Meia-Idade , Exame Físico , Valor Preditivo dos Testes , Estudos Prospectivos , Sensibilidade e Especificidade , Bexiga Urinária/fisiopatologia , Incontinência Urinária/fisiopatologia , Prolapso Uterino/classificação , Prolapso Uterino/fisiopatologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA