Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Sci Total Environ ; 926: 172049, 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38552974

RESUMO

Forests are undergoing increasing risks of drought-induced tree mortality. Species replacement patterns following mortality may have a significant impact on the global carbon cycle. Among major hardwoods, deciduous oaks (Quercus spp.) are increasingly reported as replacing dying conifers across the Northern Hemisphere. Yet, our knowledge on the growth responses of these oaks to drought is incomplete, especially regarding post-drought legacy effects. The objectives of this study were to determine the occurrence, duration, and magnitude of legacy effects of extreme droughts and how that vary across species, sites, and drought characteristics. The legacy effects were quantified by the deviation of observed from expected radial growth indices in the period 1940-2016. We used stand-level chronologies from 458 sites and 21 oak species primarily from Europe, north-eastern America, and eastern Asia. We found that legacy effects of droughts could last from 1 to 5 years after the drought and were more prolonged in dry sites. Negative legacy effects (i.e., lower growth than expected) were more prevalent after repetitive droughts in dry sites. The effect of repetitive drought was stronger in Mediterranean oaks especially in Quercus faginea. Species-specific analyses revealed that Q. petraea and Q. macrocarpa from dry sites were more negatively affected by the droughts while growth of several oak species from mesic sites increased during post-drought years. Sites showing positive correlations to winter temperature showed little to no growth depression after drought, whereas sites with a positive correlation to previous summer water balance showed decreased growth. This may indicate that although winter warming favors tree growth during droughts, previous-year summer precipitation may predispose oak trees to current-year extreme droughts. Our results revealed a massive role of repetitive droughts in determining legacy effects and highlighted how growth sensitivity to climate, drought seasonality and species-specific traits drive the legacy effects in deciduous oak species.


Assuntos
Quercus , Árvores , Quercus/fisiologia , Secas , Clima , Estações do Ano , Florestas , Mudança Climática
2.
Sci Rep ; 14(1): 4131, 2024 02 19.
Artigo em Inglês | MEDLINE | ID: mdl-38374396

RESUMO

Since 24 February 2022, Ukraine has experienced full-scale military aggression initiated by the Russian Federation. The war has had a major negative impact on vegetation cover of war-affected regions. We explored interactions between pre-war forest management and the impacts of military activities in three of the most forested Ukrainian areas of interest (AOI), affected by the war. These were forests lying between Kharkiv and Luhansk cities (AOI 'East'), forests along the Dnipro River delta (AOI 'Kherson'), and those of the Chornobyl Exclusion Zone (AOI CEZ). We used Sentinel satellite imagery to create damaged forest cover masks for the year 2022. We mapped forests with elevated fire hazard, which was defined as a degree of exposure to the fire-supporting land use (mostly an agricultural land, a common source of ignitions in Ukraine). We evaluated the forest disturbance rate in 2022, as compared to pre-war rates. We documented significant increases in non-stand replacing disturbances (low severity fires and non-fire disturbances) for all three of the AOIs. Damaged forest cover varied among the AOIs (24,180 ± 4,715 ha, or 9.3% ± 1.8% in the 'East' AOI; 7,293 ± 1,925 ha, or 15.7% ± 4.1% in the 'Kherson' AOI; 7,116 ± 1,274 ha, or 5.0% ± 0.9% in the CEZ AOI). Among the forests damaged in 2022, the 'Kherson' AOI will likely have the highest proportion of an area with elevated fire hazard in the coming decades, as compared to other regions (89% vs. 70% in the 'East' and CEZ AOIs respectively). Future fire risks and extensive war-related disturbance of forest cover call for forest management to develop strategies explicitly addressing these factors.


Assuntos
Incêndios , Incêndios Florestais , Ecossistema , Ucrânia , Florestas
3.
PLoS One ; 18(11): e0294275, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38011177

RESUMO

With climate change, plant-feeding insects increase their number of annual generations (voltinism). However, to what degree the emergence of a new herbivore generation affects the parasitism rate has not been explored. We performed a field experiment to test whether the parasitism rate differs between the first and the second generations of a specialist leaf miner (Tischeria ekebladella), both in the naturally univoltine and bivoltine parts of the leaf miner's distribution. We found an interactive effect between herbivore generation and geographical range on the parasitism rate. The parasitism rate was higher in the first compared to the second host generation in the part of the range that is naturally univoltine, whereas it did not differ between generations in the bivoltine range. Our experiment highlights that shifts in herbivore voltinism might release top-down control, with potential consequences for natural and applied systems.


Assuntos
Herbivoria , Mariposas , Animais , Insetos , Plantas , Geografia
4.
Nat Commun ; 13(1): 2015, 2022 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-35440102

RESUMO

The mechanistic pathways connecting ocean-atmosphere variability and terrestrial productivity are well-established theoretically, but remain challenging to quantify empirically. Such quantification will greatly improve the assessment and prediction of changes in terrestrial carbon sequestration in response to dynamically induced climatic extremes. The jet stream latitude (JSL) over the North Atlantic-European domain provides a synthetic and robust physical framework that integrates climate variability not accounted for by atmospheric circulation patterns alone. Surface climate impacts of north-south summer JSL displacements are not uniform across Europe, but rather create a northwestern-southeastern dipole in forest productivity and radial-growth anomalies. Summer JSL variability over the eastern North Atlantic-European domain (5-40E) exerts the strongest impact on European beech, inducing anomalies of up to 30% in modelled gross primary productivity and 50% in radial tree growth. The net effects of JSL movements on terrestrial carbon fluxes depend on forest density, carbon stocks, and productivity imbalances across biogeographic regions.


Assuntos
Fagus , Movimentos do Ar , Carbono , Mudança Climática , Florestas
5.
Ecol Evol ; 12(3): e8656, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35342593

RESUMO

Increasing air temperatures and changing precipitation patterns due to climate change can affect tree growth in boreal forests. Periodic insect outbreaks affect the growth trajectory of trees, making it difficult to quantify the climate signal in growth dynamics at scales longer than a year. We studied climate-driven growth trends and the influence of spruce budworm (Choristoneura fumiferana Clem.) outbreaks on these trends by analyzing the basal area increment (BAI) of 2058 trees of Abies balsamea (L.) Mill., Picea glauca (Moench) Voss, Thuja occidentalis L., Populus tremuloides Michx., and Betula papyrifera Marsh, which co-occurs in the boreal mixedwood forests of western Quebec. We used a generalized additive mixed model (GAMM) to analyze species-specific trends in BAI dynamics from 1967 to 1991. The model relied on tree size, cambial age, degree of spruce budworm defoliation, and seasonal climatic variables. Overall, we observed a decreasing growth rate of the spruce budworm host species, A. balsamea and P. glauca between 1967 and 1991, and an increasing growth rate for the non-host, P. tremuloides, B. papyrifera, and T. occidentalis. Our results suggest that insect outbreaks may offset growth increases resulting from a warmer climate. The observation warrants the inclusion of the spruce budworm defoliation into models predicting future forest productivity.

6.
Glob Chang Biol ; 26(4): 2505-2518, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31860143

RESUMO

The role of future forests in global biogeochemical cycles will depend on how different tree species respond to climate. Interpreting the response of forest growth to climate change requires an understanding of the temporal and spatial patterns of seasonal climatic influences on the growth of common tree species. We constructed a new network of 310 tree-ring width chronologies from three common tree species (Quercus robur, Pinus sylvestris and Fagus sylvatica) collected for different ecological, management and climate purposes in the south Baltic Sea region at the border of three bioclimatic zones (temperate continental, oceanic, southern boreal). The major climate factors (temperature, precipitation, drought) affecting tree growth at monthly and seasonal scales were identified. Our analysis documents that 20th century Scots pine and deciduous species growth is generally controlled by different climate parameters, and that summer moisture availability is increasingly important for the growth of deciduous species examined. We report changes in the influence of winter climate variables over the last decades, where a decreasing influence of late winter temperature on deciduous tree growth and an increasing influence of winter temperature on Scots pine growth was found. By comparing climate-growth responses for the 1943-1972 and 1973-2002 periods and characterizing site-level growth response stability, a descriptive application of spatial segregation analysis distinguished sites with stable responses to dominant climate parameters (northeast of the study region), and sites that collectively showed unstable responses to winter climate (southeast of the study region). The findings presented here highlight the temporally unstable and nonuniform responses of tree growth to climate variability, and that there are geographical coherent regions where these changes are similar. Considering continued climate change in the future, our results provide important regional perspectives on recent broad-scale climate-growth relationships for trees across the temperate to boreal forest transition around the south Baltic Sea.

7.
Proc Natl Acad Sci U S A ; 116(7): 2749-2754, 2019 02 12.
Artigo em Inglês | MEDLINE | ID: mdl-30692257

RESUMO

Due to anthropogenic emissions and changes in land use, trees are now exposed to atmospheric levels of [[Formula: see text]] that are unprecedented for 650,000 y [Lüthi et al. (2008) Nature 453:379-382] (thousands of tree generations). Trees are expected to acclimate by modulating leaf-gas exchanges and alter water use efficiency which may result in forest productivity changes. Here, we present evidence of one of the strongest, nonlinear, and unequivocal postindustrial increases in intrinsic water use efficiency ([Formula: see text]) ever documented (+59%). A dual-isotope tree-ring analysis ([Formula: see text] and [Formula: see text]) covering 715 y of growth of North America's oldest boreal trees (Thuja occidentalis L.) revealed an unprecedented increase in [Formula: see text] that was directly linked to elevated assimilation rates of [Formula: see text] (A). However, limited nutrient availability, changes in carbon allocation strategies, and changes in stomatal density may have offset stem growth benefits awarded by the increased [Formula: see text] Our results demonstrate that even in scenarios where a positive [Formula: see text] fertilization effect is observed, other mechanisms may prevent trees from assimilating and storing supplementary anthropogenic emissions as above-ground biomass. In such cases, the sink capacity of forests in response to changing atmospheric conditions might be overestimated.


Assuntos
Dióxido de Carbono , Árvores/fisiologia , Água , Aclimatação , América do Norte , Árvores/crescimento & desenvolvimento
8.
Ecol Lett ; 21(12): 1833-1844, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30230201

RESUMO

Climatically controlled allocation to reproduction is a key mechanism by which climate influences tree growth and may explain lagged correlations between climate and growth. We used continent-wide datasets of tree-ring chronologies and annual reproductive effort in Fagus sylvatica from 1901 to 2015 to characterise relationships between climate, reproduction and growth. Results highlight that variable allocation to reproduction is a key factor for growth in this species, and that high reproductive effort ('mast years') is associated with stem growth reduction. Additionally, high reproductive effort is associated with previous summer temperature, creating lagged climate effects on growth. Consequently, understanding growth variability in forest ecosystems requires the incorporation of reproduction, which can be highly variable. Our results suggest that future response of growth dynamics to climate change in this species will be strongly influenced by the response of reproduction.


Assuntos
Fagus , Árvores , Mudança Climática , Florestas , Reprodução , Árvores/crescimento & desenvolvimento
9.
Nat Commun ; 8(1): 2205, 2017 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-29263383

RESUMO

Climate teleconnections drive highly variable and synchronous seed production (masting) over large scales. Disentangling the effect of high-frequency (inter-annual variation) from low-frequency (decadal trends) components of climate oscillations will improve our understanding of masting as an ecosystem process. Using century-long observations on masting (the MASTREE database) and data on the Northern Atlantic Oscillation (NAO), we show that in the last 60 years both high-frequency summer and spring NAO, and low-frequency winter NAO components are highly correlated to continent-wide masting in European beech and Norway spruce. Relationships are weaker (non-stationary) in the early twentieth century. This finding improves our understanding on how climate variation affects large-scale synchronization of tree masting. Moreover, it supports the connection between proximate and ultimate causes of masting: indeed, large-scale features of atmospheric circulation coherently drive cues and resources for masting, as well as its evolutionary drivers, such as pollination efficiency, abundance of seed dispersers, and natural disturbance regimes.


Assuntos
Mudança Climática , Clima , Estações do Ano , Dispersão de Sementes , Árvores/crescimento & desenvolvimento , Conservação dos Recursos Naturais/métodos , Conservação dos Recursos Naturais/tendências , Ecossistema , Fagus/crescimento & desenvolvimento , Picea/crescimento & desenvolvimento , Polinização , Reprodução , Sementes/crescimento & desenvolvimento , Árvores/classificação
10.
New Phytol ; 215(2): 595-608, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28631320

RESUMO

Mast seeding is a crucial population process in many tree species, but its spatio-temporal patterns and drivers at the continental scale remain unknown . Using a large dataset (8000 masting observations across Europe for years 1950-2014) we analysed the spatial pattern of masting across the entire geographical range of European beech, how it is influenced by precipitation, temperature and drought, and the temporal and spatial stability of masting-weather correlations. Beech masting exhibited a general distance-dependent synchronicity and a pattern structured in three broad geographical groups consistent with continental climate regimes. Spearman's correlations and logistic regression revealed a general pattern of beech masting correlating negatively with temperature in the summer 2 yr before masting, and positively with summer temperature 1 yr before masting (i.e. 2T model). The temperature difference between the two previous summers (DeltaT model) was also a good predictor. Moving correlation analysis applied to the longest eight chronologies (74-114 yr) revealed stable correlations between temperature and masting, confirming consistency in weather cues across space and time. These results confirm widespread dependency of masting on temperature and lend robustness to the attempts to reconstruct and predict mast years using temperature data.


Assuntos
Fagus/fisiologia , Sementes/fisiologia , Clima , Secas , Europa (Continente) , Modelos Logísticos , Estações do Ano , Análise Espaço-Temporal , Temperatura , Tempo (Meteorologia)
11.
Ecology ; 98(5): 1473, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28241388

RESUMO

Tree masting is one of the most intensively studied ecological processes. It affects nutrient fluxes of trees, regeneration dynamics in forests, animal population densities, and ultimately influences ecosystem services. Despite a large volume of research focused on masting, its evolutionary ecology, spatial and temporal variability, and environmental drivers are still matter of debate. Understanding the proximate and ultimate causes of masting at broad spatial and temporal scales will enable us to predict tree reproductive strategies and their response to changing environment. Here we provide broad spatial (distribution range-wide) and temporal (century) masting data for the two main masting tree species in Europe, European beech (Fagus sylvatica L.) and Norway spruce (Picea abies (L.) H. Karst.). We collected masting data from a total of 359 sources through an extensive literature review and from unpublished surveys. The data set has a total of 1,747 series and 18,348 yearly observations from 28 countries and covering a time span of years 1677-2016 and 1791-2016 for beech and spruce, respectively. For each record, the following information is available: identification code; species; year of observation; proxy of masting (flower, pollen, fruit, seed, dendrochronological reconstructions); statistical data type (ordinal, continuous); data value; unit of measurement (only in case of continuous data); geographical location (country, Nomenclature of Units for Territorial Statistics NUTS-1 level, municipality, coordinates); first and last record year and related length; type of data source (field survey, peer reviewed scientific literature, gray literature, personal observation); source identification code; date when data were added to the database; comments. To provide a ready-to-use masting index we harmonized ordinal data into five classes. Furthermore, we computed an additional field where continuous series with length >4 yr where converted into a five classes ordinal index. To our knowledge, this is the most comprehensive published database on species-specific masting behavior. It is useful to study spatial and temporal patterns of masting and its proximate and ultimate causes, to refine studies based on tree-ring chronologies, to understand dynamics of animal species and pests vectored by these animals affecting human health, and it may serve as calibration-validation data for dynamic forest models.


Assuntos
Fagus/fisiologia , Picea/fisiologia , Europa (Continente) , Florestas , Noruega , Árvores
12.
Sci Rep ; 6: 22532, 2016 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-26940995

RESUMO

Understanding the drivers of the boreal forest fire activity is challenging due to the complexity of the interactions driving fire regimes. We analyzed drivers of forest fire activity in Northern Scandinavia (above 60 N) by combining modern and proxy data over the Holocene. The results suggest that the cold climate in northern Scandinavia was generally characterized by dry conditions favourable to periods of regionally increased fire activity. We propose that the cold conditions over the northern North Atlantic, associated with low SSTs, expansion of sea ice cover, and the southward shift in the position of the subpolar gyre, redirect southward the precipitation over Scandinavia, associated with the westerlies. This dynamics strengthens high pressure systems over Scandinavia and results in increased regional fire activity. Our study reveals a previously undocumented teleconnection between large scale climate and ocean dynamics over the North Atlantic and regional boreal forest fire activity in Northern Scandinavia. Consistency of the pattern observed annually through millennium scales suggests that a strong link between Atlantic SST and fire activity on multiple temporal scales over the entire Holocene is relevant for understanding future fire activity across the European boreal zone.

13.
Environ Monit Assess ; 134(1-3): 199-210, 2007 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-17294275

RESUMO

Crown defoliation of oak (Quercus robur and Q. petraea) was analysed in 808 trees during three forest condition surveys (1988, 1993, and 1999) in the southern Sweden. From 1988 to 1999 crown defoliation increased by more than 20%. Changes in crown defoliation were related to the pH in the upper 20-30 cm of the mineral soils, which was closely connected to other measures of soil fertility (cation exchange capacity, CEC and C/N ratio). Trees growing on soils with a high pH (> or =4.00, in BaCl2 filtrate), high CEC and low C/N ratio had significantly lower crown defoliation than trees growing on more acid soils (pH <4.00), indicating that less favourable soil conditions may further enhance oak decline. Age did not differentiate trees with respect to crown defoliation, indicating that decline in crown condition was not due to an age-related increase in crown transparency. Considering only trees younger than 100 years, a significant interaction was observed between changes in crown defoliation and soil pH. Trees younger than 100 years old growing on more acidic soils had a greater increase in crown transparency than trees on more basic soils between 1988 and 1999. Trees > or =100 years old had significantly higher defoliation on more acidic than on more basic soils, however defoliation dynamics of these trees over 1988-99 was not related to soil acidity. Two biotic agents (insect and fungal leaf infections) evaluated in this study did not prove to be important drivers of defoliation dynamics.


Assuntos
Folhas de Planta , Quercus , Animais , Monitoramento Ambiental , Fungos , Concentração de Íons de Hidrogênio , Insetos , Solo/análise , Suécia , Árvores
14.
Environ Monit Assess ; 128(1-3): 61-73, 2007 May.
Artigo em Inglês | MEDLINE | ID: mdl-17171283

RESUMO

We studied correlation between crown conditions and tree-ring widths in 260 trees of pedunculate oak (Quercus robur L.) growing on 33 sites in southern Sweden. The tree-ring increment over 1998-2002 was highest in trees with healthy crowns, intermediate in trees with moderately declined crowns, and lowest in trees with heavily declining crowns. The time period with significant correlation between crown status and tree-ring increment varied between 10 years (given autocorrelation in tree-ring chronologies preserved) and 4 years (autocorrelation removed). In pairwise comparisons of three crown classes, differences in tree-ring increment between trees with healthy crowns and trees with heavily declining crowns were the most pronounced, Fisher LSD P value staying below 0.05 over 13 years (autocorrelation preserved ) or 4 years (autocorrelation removed). Over two 5-year periods (1993-1997 vs. 1998-2002) the cumulative increment increased significantly for trees with healthy crowns, did not change in trees with moderately declining crowns, and significantly decreased in trees with heavily declining crowns. For trees with healthy crowns, this dynamics may represent growth recovery after 1992 drought. Instead, oaks with defoliation above 60% appear to reach a threshold in their ability to recover growth. At sites on nutrient-poor soils cumulative increments over 1998-2002 differed significantly among trees with different crown condition and no differences were observed at sites on nutrient-rich soils. Analyses and interpretation of the oak growth trends as recovered from tree-ring chronologies may be improved by controlling for the crown status of the trees sampled, e.g., by using sampling strategy that would represent the average crown and growth conditions of the sites.


Assuntos
Folhas de Planta , Árvores/crescimento & desenvolvimento , Desastres , Suécia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA