Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Annu Int Conf IEEE Eng Med Biol Soc ; 2022: 2403-2409, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-36086308

RESUMO

We present an approach to develop seamless and scalable piezo-resistive matrix-based intelligent textile using digital flat-bed and circular knitting machines. By combining and customizing functional and common yarns, we can design the aesthetics and architecture and engineer both the electrical and mechanical properties of a sensing textile. By incorporating a melting fiber, we propose a method to shape and personalize three-dimensional piezo-resistive fabric structure that can conform to the human body through thermoforming principles. It results in a robust textile structure and intimate interfacing, suppressing sensor drifts and maximizing accuracy while ensuring comfortability. This paper describes our textile design, fabrication approach, wireless hardware system, deep-learning enabled recognition methods, experimental results, and application scenarios. The digital knitting approach enables the fabrication of 2D to 3D pressure-sensitive textile interiors and wearables, including a 45 x 45 cm intelligent mat with 256 pressure-sensing pixels, and a circularly-knitted, form-fitted shoe with 96 sensing pixels across its 3D surface both with linear piezo-resistive sensitivity of 39.4 for up to 500 N load. Our personalized convolutional neural network models are able to classify 7 basic activities and exercises and 7 yoga poses in-real time with 99.6% and 98.7% accuracy respectively. Further, we demonstrate our technology for a variety of applications ranging from rehabilitation and sport science, to wearables and gaming interfaces.


Assuntos
Têxteis , Dispositivos Eletrônicos Vestíveis , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA