Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
Mol Ther Methods Clin Dev ; 32(2): 101234, 2024 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-38558569

RESUMO

Gene therapies and associated technologies are transforming biomedical research and enabling novel therapeutic options for patients living with debilitating and incurable genetic disorders. The vector system based on recombinant adeno-associated viral vectors (AAVs) has shown great promise in recent clinical trials for genetic diseases of multiple organs, such as the liver and the nervous system. Despite recent successes toward the development of novel bioengineered AAV variants for improved transduction of primary human tissues and cells, vectors that can efficiently transduce human Schwann cells (hSCs) have yet to be identified. Here, we report the application of the functional transduction-RNA selection method in primary hSCs for the development of AAV variants for specific and efficient transgene delivery to hSCs. The two identified capsid variants, Pep2hSC1 and Pep2hSC2, show conserved potency for delivery across various in vitro, in vivo, and ex vivo models of hSCs. These novel AAV capsids will serve as valuable research tools, forming the basis for therapeutic solutions for both SC-related disorders or peripheral nervous system injury.

2.
Mol Ther ; 32(3): 818-836, 2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38297833

RESUMO

Directed evolution of natural AAV9 using peptide display libraries have been widely used in the search for an optimal recombinant AAV (rAAV) for transgene delivery across the blood-brain barrier (BBB) to the CNS following intravenous ( IV) injection. In this study, we used a different approach by creating a shuffled rAAV capsid library based on parental AAV serotypes 1 through 12. Following selection in mice, 3 novel variants closely related to AAV1, AAV-BBB6, AAV-BBB28, and AAV-BBB31, emerged as top candidates. In direct comparisons with AAV9, our novel variants demonstrated an over 270-fold improvement in CNS transduction and exhibited a clear bias toward neuronal cells. Intriguingly, our AAV-BBB variants relied on the LY6A cellular receptor for CNS entry, similar to AAV9 peptide variants AAV-PHP.eB and AAV.CAP-B10, despite the different bioengineering methods used and parental backgrounds. The variants also showed reduced transduction of both mouse liver and human primary hepatocytes in vivo. To increase clinical translatability, we enhanced the immune escape properties of our new variants by introducing additional modifications based on rational design. Overall, our study highlights the potential of AAV1-like vectors for efficient CNS transduction with reduced liver tropism, offering promising prospects for CNS gene therapies.


Assuntos
Barreira Hematoencefálica , Terapia Genética , Humanos , Animais , Camundongos , Terapia Genética/métodos , Capsídeo , Fígado , Peptídeos/genética , Dependovirus , Vetores Genéticos/genética , Transdução Genética
3.
Front Mol Neurosci ; 16: 1269387, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38169846

RESUMO

Mutations in leucine-rich repeat kinase 2 (LRRK2) are a common cause of inherited and sporadic Parkinson's disease (PD) and previous work suggests that dephosphorylation of LRRK2 at a cluster of heterologous phosphosites is associated to disease. We have previously reported subunits of the PP1 and PP2A classes of phosphatases as well as the PAK6 kinase as regulators of LRRK2 dephosphorylation. We therefore hypothesized that PAK6 may have a functional link with LRRK2's phosphatases. To investigate this, we used PhosTag gel electrophoresis with purified proteins and found that PAK6 phosphorylates the PP2A regulatory subunit PPP2R2C at position S381. While S381 phosphorylation did not affect PP2A holoenzyme formation, a S381A phosphodead PPP2R2C showed impaired binding to LRRK2. Also, PAK6 kinase activity changed PPP2R2C subcellular localization in a S381 phosphorylation-dependent manner. Finally, PAK6-mediated dephosphorylation of LRRK2 was unaffected by phosphorylation of PPP2R2C at S381, suggesting that the previously reported mechanism whereby PAK6-mediated phosphorylation of 14-3-3 proteins promotes 14-3-3-LRRK2 complex dissociation and consequent exposure of LRRK2 phosphosites for dephosphorylation is dominant. Taken together, we conclude that PAK6-mediated phosphorylation of PPP2R2C influences the recruitment of PPP2R2C to the LRRK2 complex and PPP2R2C subcellular localization, pointing to an additional mechanism in the fine-tuning of LRRK2 phosphorylation.

4.
Cells ; 11(6)2022 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-35326469

RESUMO

The Leucine Rich Repeat Kinase 2 (LRRK2) gene is a major genetic determinant of Parkinson's disease (PD), encoding a homonymous multi-domain protein with two catalytic activities, GTPase and Kinase, involved in intracellular signaling and trafficking. LRRK2 is phosphorylated at multiple sites, including a cluster of autophosphorylation sites in the GTPase domain and a cluster of heterologous phosphorylation sites at residues 860 to 976. Phosphorylation at these latter sites is found to be modified in brains of PD patients, as well as for some disease mutant forms of LRRK2. The main aim of this study is to investigate the functional consequences of LRRK2 phosphorylation or dephosphorylation at LRRK2's heterologous phosphorylation sites. To this end, we generated LRRK2 phosphorylation site mutants and studied how these affected LRRK2 catalytic activity, neurite outgrowth and lysosomal physiology in cellular models. We show that phosphorylation of RAB8a and RAB10 substrates are reduced with phosphomimicking forms of LRRK2, while RAB29 induced activation of LRRK2 kinase activity is enhanced for phosphodead forms of LRRK2. Considering the hypothesis that PD pathology is associated to increased LRRK2 kinase activity, our results suggest that for its heterologous phosphorylation sites LRRK2 phosphorylation correlates to healthy phenotypes and LRRK2 dephosphorylation correlates to phenotypes associated to the PD pathological processes.


Assuntos
Doença de Parkinson , Humanos , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina/genética , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina/metabolismo , Lisossomos/metabolismo , Doença de Parkinson/metabolismo , Fosforilação/fisiologia , Transdução de Sinais
5.
Mol Ther Methods Clin Dev ; 24: 88-101, 2022 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-34977275

RESUMO

Recent clinical successes have intensified interest in using adeno-associated virus (AAV) vectors for therapeutic gene delivery. The liver is a key clinical target, given its critical physiological functions and involvement in a wide range of genetic diseases. Here, we report the bioengineering of a set of next-generation AAV vectors, named AAV-SYDs (where "SYD" stands for Sydney, Australia), with increased human hepato-tropism in a liver xenograft mouse model repopulated with primary human hepatocytes. We followed a two-step process that staggered directed evolution and domain-swapping approaches. Using DNA-family shuffling, we first mapped key AAV capsid regions responsible for efficient human hepatocyte transduction in vivo. Focusing on these regions, we next applied domain-swapping strategies to identify and study key capsid residues that enhance primary human hepatocyte uptake and transgene expression. Our findings underscore the potential of AAV-SYDs as liver gene therapy vectors and provide insights into the mechanism responsible for their enhanced transduction profile.

6.
Neurobiol Dis ; 157: 105426, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34144124

RESUMO

LRRK2 is a highly phosphorylated multidomain protein and mutations in the gene encoding LRRK2 are a major genetic determinant of Parkinson's disease (PD). Dephosphorylation at LRRK2's S910/S935/S955/S973 phosphosite cluster is observed in several conditions including in sporadic PD brain, in several disease mutant forms of LRRK2 and after pharmacological LRRK2 kinase inhibition. However, the mechanism of LRRK2 dephosphorylation is poorly understood. We performed a phosphatome-wide reverse genetics screen to identify phosphatases involved in the dephosphorylation of the LRRK2 phosphosite S935. Candidate phosphatases selected from the primary screen were tested in mammalian cells, Xenopus oocytes and in vitro. Effects of PP2A on endogenous LRRK2 phosphorylation were examined via expression modulation with CRISPR/dCas9. Our screening revealed LRRK2 phosphorylation regulators linked to the PP1 and PP2A holoenzyme complexes as well as CDC25 phosphatases. We showed that dephosphorylation induced by different kinase inhibitor triggered relocalisation of phosphatases PP1 and PP2A in LRRK2 subcellular compartments in HEK-293 T cells. We also demonstrated that LRRK2 is an authentic substrate of PP2A both in vitro and in Xenopus oocytes. We singled out the PP2A holoenzyme PPP2CA:PPP2R2 as a powerful phosphoregulator of pS935-LRRK2. Furthermore, we demonstrated that this specific PP2A holoenzyme induces LRRK2 relocalization and triggers LRRK2 ubiquitination, suggesting its involvement in LRRK2 clearance. The identification of the PPP2CA:PPP2R2 complex regulating LRRK2 S910/S935/S955/S973 phosphorylation paves the way for studies refining PD therapeutic strategies that impact LRRK2 phosphorylation.


Assuntos
Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina/metabolismo , Proteína Fosfatase 1/metabolismo , Proteína Fosfatase 2/metabolismo , Animais , Células HEK293 , Holoenzimas/metabolismo , Humanos , Técnicas In Vitro , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina/genética , Proteínas do Tecido Nervoso/metabolismo , Oócitos/metabolismo , Fosforilação , Inibidores de Proteínas Quinases/farmacologia , Transporte Proteico/efeitos dos fármacos , Proteínas de Xenopus/metabolismo , Xenopus laevis
7.
Mol Ther Methods Clin Dev ; 21: 607-620, 2021 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-34095344

RESUMO

Recent successes in clinical gene therapy applications have intensified the interest in using adeno-associated viruses (AAVs) as vectors for gene delivery into human liver. An inherent intriguing characteristic of AAVs is that vector variants vary substantially in their ability to transduce hepatocytes from different species. This has historically limited the value of preclinical studies using rodent models for predicting the efficiency of AAV vectors in liver-targeted gene therapy clinical studies. In this work, we aimed to investigate the key determinants of the observed differential interspecies transduction abilities among AAV variants. We took advantage of domain swapping strategies between AAV-KP1, a newly identified variant with enhanced murine liver tropism, and AAV3b, which functions poorly in mice. The systematic in vivo comparison of AAV3b/AAV-KP1 chimeric variants allowed us to identify a threonine insertion at position 265 within variable region I (VR-I) as the key residue that confers murine hepatic transduction to human-derived clade B (AAV2-like) and clade C (AAV3b-like) variants. We propose to use this insertion to generate phylogenetically related AAV surrogates in support of toxicology and dosing studies in the murine liver model.

8.
Sci Transl Med ; 12(560)2020 09 09.
Artigo em Inglês | MEDLINE | ID: mdl-32908003

RESUMO

Recent clinical successes in gene therapy applications have intensified interest in using adeno-associated viruses (AAVs) as vectors for therapeutic gene delivery. Although prototypical AAV2 shows robust in vitro transduction of human hepatocyte-derived cell lines, it has not translated into an effective vector for liver-directed gene therapy in vivo. This is consistent with observations made in Fah-/-/Rag2-/-/Il2rg-/- (FRG) mice with humanized livers, showing that AAV2 functions poorly in this xenograft model. Here, we derived naturally hepatotropic AAV capsid sequences from primary human liver samples. We demonstrated that capsid mutations, likely acquired as an unintentional consequence of tissue culture propagation, attenuated the intrinsic human hepatic tropism of natural AAV2 and related human liver AAV isolates. These mutations resulted in amino acid changes that increased binding to heparan sulfate proteoglycan (HSPG), which has been regarded as the primary cellular receptor mediating AAV2 infection of human hepatocytes. Propagation of natural AAV variants in vitro showed tissue culture adaptation with resulting loss of tropism for human hepatocytes. In vivo readaptation of the prototypical AAV2 in FRG mice with a humanized liver resulted in restoration of the intrinsic hepatic tropism of AAV2 through decreased binding to HSPG. Our results challenge the notion that high affinity for HSPG is essential for AAV2 entry into human hepatocytes and suggest that natural AAV capsids of human liver origin are likely to be more effective for liver-targeted gene therapy applications than culture-adapted AAV2.


Assuntos
Dependovirus , Vetores Genéticos , Animais , Capsídeo , Dependovirus/genética , Humanos , Fígado , Camundongos , Transdução Genética , Tropismo
9.
Front Neurosci ; 14: 527, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32612495

RESUMO

Mutations in the Leucine Rich Repeat Kinase 2 (LRRK2) gene are linked to autosomal dominant Parkinson's disease (PD), and genetic variations at the LRRK2 locus are associated with an increased risk for sporadic PD. This gene encodes a kinase that is physiologically multiphosphorylated, including clusters of both heterologous phosphorylation and autophosphorylation sites. Several pieces of evidence indicate that LRRK2's phosphorylation is important for its pathological and physiological functioning. These include a reduced LRRK2 heterologous phosphorylation in PD brains or after pharmacological inhibition of LRRK2 kinase activity as well as the appearance of subcellular LRRK2 accumulations when this protein is dephosphorylated at heterologous phosphosites. Nevertheless, the regulatory mechanisms governing LRRK2 phosphorylation levels and the cellular consequences of changes in LRRK2 phosphorylation remain incompletely understood. In this review, we present current knowledge on LRRK2 phosphorylation, LRRK2 phosphoregulation, and how LRRK2 phosphorylation changes affect cellular processes that may ultimately be linked to PD mechanisms.

10.
Mol Ther Methods Clin Dev ; 17: 1139-1154, 2020 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-32490035

RESUMO

Use of the prototypical adeno-associated virus type 2 (AAV2) capsid delivered unexpectedly modest efficacy in an early liver-targeted gene therapy trial for hemophilia B. This result is consistent with subsequent data generated in chimeric mouse-human livers showing that the AAV2 capsid transduces primary human hepatocytes in vivo with low efficiency. In contrast, novel variants generated by directed evolution in the same model, such as AAV-NP59, transduce primary human hepatocytes with high efficiency. While these empirical data have immense translational implications, the mechanisms underpinning this enhanced AAV capsid transduction performance in primary human hepatocytes are yet to be fully elucidated. Remarkably, AAV-NP59 differs from the prototypical AAV2 capsid by only 11 aa and can serve as a tool to study the correlation between capsid sequence/structure and vector function. Using two orthogonal vectorological approaches, we have determined that just 2 of the 11 changes present in AAV-NP59 (T503A and N596D) account for the enhanced transduction performance of this capsid variant in primary human hepatocytes in vivo, an effect that we have associated with attenuation of heparan sulfate proteoglycan (HSPG) binding affinity. In support of this hypothesis, we have identified, using directed evolution, two additional single amino acid substitution AAV2 variants, N496D and N582S, which are highly functional in vivo. Both substitution mutations reduce AAV2's affinity for HSPG. Finally, we have modulated the ability of AAV8, a highly murine-hepatotropic serotype, to interact with HSPG. The results support our hypothesis that enhanced HSPG binding can negatively affect the in vivo function of otherwise strongly hepatotropic variants and that modulation of the interaction with HSPG is critical to ensure maximum efficiency in vivo. The insights gained through this study can have powerful implications for studies into AAV biology and capsid development for preclinical and clinical applications targeting liver and other organs.

11.
Hum Gene Ther ; 31(9-10): 575-589, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32000541

RESUMO

Adeno-associated virus (AAV) vectors are quickly becoming the vectors of choice for therapeutic gene delivery. To date, hundreds of natural isolates and bioengineered variants have been reported. While factors such as high production titer and low immunoreactivity are important to consider, the ability to deliver the genetic payload (physical transduction) and to drive high transgene expression (functional transduction) remains the most important feature when selecting AAV variants for clinical applications. Reporter expression assays are the most commonly used methods for determining vector fitness. However, such approaches are time consuming and become impractical when evaluating a large number of variants. Limited access to primary human tissues or challenging model systems further complicates vector testing. To address this problem, convenient high-throughput methods based on next-generation sequencing (NGS) are being developed. To this end, we built an AAV Testing Kit that allows inherent flexibility in regard to number and type of AAV variants included, and is compatible with in vitro, ex vivo, and in vivo applications. The Testing Kit presented here consists of a mix of 30 known AAVs where each variant encodes a CMV-eGFP cassette and a unique barcode in the 3'-untranslated region of the eGFP gene, allowing NGS-barcode analysis at both the DNA and RNA/cDNA levels. To validate the AAV Testing Kit, individually packaged barcoded variants were mixed at an equal ratio and used to transduce cells/tissues of interest. DNA and RNA/cDNA were extracted and subsequently analyzed by NGS to determine the physical/functional transduction efficiencies. We were able to assess the transduction efficiencies of immortalized cells, primary cells, and induced pluripotent stem cells in vitro, as well as in vivo transduction in naïve mice and a xenograft liver model. Importantly, while our data validated previously reported transduction characteristics of individual capsids, we also identified novel previously unknown tropisms for some AAV variants.


Assuntos
Dependovirus/genética , Vetores Genéticos/genética , Ensaios de Triagem em Larga Escala/métodos , Animais , Capsídeo/metabolismo , Linhagem Celular , Linhagem Celular Tumoral , Células Cultivadas , DNA Viral , Feminino , Fibroblastos , Técnicas de Transferência de Genes , Terapia Genética , Células HeLa , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Células-Tronco Pluripotentes Induzidas , Masculino , Camundongos , Receptor EphB2 , Linfócitos T , Transdução Genética , Transgenes
12.
Sci Rep ; 8(1): 17563, 2018 12 03.
Artigo em Inglês | MEDLINE | ID: mdl-30510219

RESUMO

Parkinson's disease (PD) and multiple system atrophy (MSA) are neurodegenerative diseases characterized by inclusions mainly composed of α-synuclein (α-syn) aggregates. The objective of this study was to investigate if ß-synuclein (ß-syn) overexpression could have beneficial effects by inhibiting the aggregation of α-syn. The M83 transgenic mouse is a model of synucleinopathy, which develops severe motor symptoms associated with aggregation of α-syn. M83 neonate or adult mice were injected with adeno-associated virus vectors carrying the human ß-syn gene (AAVß-syn) or green fluorescent protein gene (AAVGFP) using different injection sites. The M83 disease was - or not - accelerated using extracts of M83 brains injected with brain extract from mouse (M83) or human (MSA) origins. AAV vectors expression was confirmed using Western blot and ELISA technics. AAV mediated ß-syn overexpression did not delay the disease onset or reduce the α-syn phosphorylated at serine 129 levels detected by ELISA, regardless of the AAV injection route and the inoculation of brain extracts. Instead, a proteinase-K resistant ß-syn staining was detected by immunohistochemistry, specifically in sick M83 mice overexpressing ß-syn after inoculation of AAVß-syn. This study indicated for the first time that viral vector-mediated ß-syn overexpression could form aggregates in a model of synucleinopathy.


Assuntos
Dependovirus , Vetores Genéticos , Atrofia de Múltiplos Sistemas , Neuroproteção , Transdução Genética , beta-Sinucleína , Animais , Modelos Animais de Doenças , Camundongos , Camundongos Transgênicos , Atrofia de Múltiplos Sistemas/genética , Atrofia de Múltiplos Sistemas/metabolismo , Atrofia de Múltiplos Sistemas/terapia , alfa-Sinucleína/genética , alfa-Sinucleína/metabolismo , beta-Sinucleína/genética , beta-Sinucleína/metabolismo
13.
Hum Mol Genet ; 26(14): 2747-2767, 2017 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-28453723

RESUMO

Mutations in leucine-rich repeat kinase 2 (LRRK2) comprise the most common cause of familial Parkinson's disease (PD), and sequence variants modify risk for sporadic PD. Previous studies indicate that LRRK2 interacts with microtubules (MTs) and alters MT-mediated vesicular transport processes. However, the molecular determinants within LRRK2 required for such interactions have remained unknown. Here, we report that most pathogenic LRRK2 mutants cause relocalization of LRRK2 to filamentous structures which colocalize with a subset of MTs, and an identical relocalization is seen upon pharmacological LRRK2 kinase inhibition. The pronounced colocalization with MTs does not correlate with alterations in LRRK2 kinase activity, but rather with increased GTP binding. Synthetic mutations which impair GTP binding, as well as LRRK2 GTP-binding inhibitors profoundly interfere with the abnormal localization of both pathogenic mutant as well as kinase-inhibited LRRK2. Conversely, addition of a non-hydrolyzable GTP analog to permeabilized cells enhances the association of pathogenic or kinase-inhibited LRRK2 with MTs. Our data elucidate the mechanism underlying the increased MT association of select pathogenic LRRK2 mutants or of pharmacologically kinase-inhibited LRRK2, with implications for downstream MT-mediated transport events.


Assuntos
Guanosina Trifosfato/metabolismo , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina/metabolismo , Doença de Parkinson/metabolismo , GTP Fosfo-Hidrolases/metabolismo , Proteínas de Ligação ao GTP/genética , Proteínas de Ligação ao GTP/metabolismo , Variação Genética , Guanosina Trifosfato/genética , Células HEK293 , Humanos , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina/antagonistas & inibidores , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina/genética , Microtúbulos/genética , Microtúbulos/metabolismo , Mutação , Doença de Parkinson/genética , Fosforilação , Inibidores de Proteínas Quinases/farmacologia , Transdução de Sinais
14.
Biochem Soc Trans ; 45(1): 207-212, 2017 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-28202674

RESUMO

Leucine-rich repeat kinase 2 (LRRK2) is a complex signalling protein that is a key therapeutic target, particularly in Parkinson's disease (PD). In addition, there is now evidence showing that LRRK2 expression and phosphorylation levels have potential as markers of disease or target engagement. Indeed, reports show increases in LRRK2 protein levels in the prefrontal cortex of PD patients relative to controls, suggesting that increase in total LRRK2 protein expression is correlated with disease progression. LRRK2 phosphorylation levels are reduced in experimental systems for most disease mutants, and LRRK2 is also rapidly dephosphorylated upon LRRK2 inhibitor treatment, considered potential therapeutics. Recently, the presence of LRRK2 was confirmed in exosomes from human biofluids, including urine and cerebrospinal fluid. Moreover, phosphorylation of LRRK2 at phosphosites S910, S935, S955 and S973, as well as at the autophosphoryation site S1292, was found in urinary exosomes. In this review, we summarize knowledge on detection of LRRK2 in human biofluids and the relevance of these findings for the development of PD-related biomarkers.


Assuntos
Biomarcadores/líquido cefalorraquidiano , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina/metabolismo , Doença de Parkinson/enzimologia , Córtex Pré-Frontal/enzimologia , Sequência de Aminoácidos , Biomarcadores/sangue , Biomarcadores/urina , Exossomos/enzimologia , Humanos , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina/genética , Doença de Parkinson/diagnóstico , Doença de Parkinson/genética , Fosforilação , Homologia de Sequência de Aminoácidos , Serina/genética , Serina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA