Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Opt Express ; 31(24): 40525-40537, 2023 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-38041351

RESUMO

The use of 3D printed micro-optical components has enabled the miniaturization of various optical systems, including those based on single photon sources. However, in order to enhance their usability and performance, it is crucial to gain insights into the physical effects influencing these systems via computational approaches. As there is no universal numerical method which can be efficiently applied in all cases, combining different techniques becomes essential to reduce modeling and simulation effort. In this work, we investigate the integration of diverse numerical techniques to simulate and analyze optical systems consisting of single photon sources and 3D printed micro-optical components. By leveraging these tools, we primarily focus in evaluating the impact of different far-field spatial distributions and the underlying physical phenomena on the overall performance of a compound micro-optical system via the direct evaluation of a fiber in-coupling efficiency integral expression.

2.
Opt Express ; 31(18): 28874-28890, 2023 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-37710697

RESUMO

In order to extend simulation capabilities for reflective and catadioptric 3D-printed micro optics, we present a fast bidirectional vector wave propagation method (BWPM). Contrary to established fast simulation methods like the wave propagation method (WPM), the BWPM allows for the additional consideration of reflected and backwards propagating electric fields. We study the convergence of the BWPM and investigate relevant simulation examples. Especially, the BWPM is used for evaluation of 3D-printed index matching caps (IMCs) in order to suppress back reflected light in imaging fibers, used for keyhole access endoscopy. Simulations studying the viability of IMCs are followed up with experimental investigations. We demonstrate that 3D-printed IMCs can be used to suppress noise caused by back reflected light, that otherwise would prohibit the use of imaging fibers in an epi-illumination configuration.

3.
Opt Express ; 30(18): 32292-32305, 2022 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-36242294

RESUMO

We discuss the coupling efficiency of single-photon sources into single-mode fibers using 3D printed micro-optical lens designs. Using the wave propagation method, we optimize lens systems for two different quantum light sources and assess the results in terms of maximum coupling efficiencies, misalignment effects, and thermo-optical influences. Thereby, we compare singlet lens designs with one lens printed onto the fiber with doublet lens designs with an additional lens printed onto the semiconductor substrate. The single-photon sources are quantum dots based on microlenses and circular Bragg grating cavities at 930 nm and 1550 nm, respectively.

4.
Opt Express ; 30(22): 40161-40173, 2022 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-36298953

RESUMO

In this work, we propose the Fast Polarized Wave Propagation Method (FPWPM), which is an efficient method for vector wave optical simulations of microoptics. The FPWPM is capable of handling comparably large simulation volumes while maintaining quick runtime. This allows for real-world application of this method for the rapid development process of 3D-printed microoptics. By comparison to established routines like the rigorous coupled wave analysis (RCWA) or the Richards-Wolf-Integral, accuracy and superior runtime efficiency of the FPWPM are demonstrated by simulation of interfaces, gratings, and lenses. By considering polarization in simulations, the FPWPM facilitates the analysis of optical elements which employ this property of electromagnetic waves as a feature in their optical design, e.g., diffractive elements, gratings, or optics with high angle of incidence like high numerical aperture lenses.

5.
Opt Express ; 30(2): 707-720, 2022 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-35209256

RESUMO

Simultaneous realization of ultra-large field of view (FOV), large lateral image size, and a small form factor is one of the challenges in imaging lens design and fabrication. All combined this yields an extensive flow of information while conserving ease of integration where space is limited. Here, we present concepts, correction methods and realizations towards freeform multi-aperture wide-angle cameras fabricated by femtosecond direct laser writing (fsDLW). The 3D printing process gives us the design freedom to create 180° × 360° cameras with a flat form factor in the micrometer range by splitting the FOV into several apertures. Highly tilted and decentered non-rotational lens shapes as well as catadioptric elements are used in the optical design to map the FOV onto a flat surface in a Scheimpflug manner. We present methods to measure and correct freeform surfaces with up to 180° surface normals by confocal measurements, and iterative fabrication via fsDLW. Finally, approaches for digital distortion correction and image stitching are demonstrated and two realizations of freeform multi-aperture wide-angle cameras are presented.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA