Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 102
Filtrar
2.
Lancet Microbe ; 5(4): e317-e325, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38359857

RESUMO

BACKGROUND: There has been high uptake of rapid antigen test device use for point-of-care COVID-19 diagnosis. Individuals who are symptomatic but test negative on COVID-19 rapid antigen test devices might have a different respiratory viral infection. We aimed to detect and sequence non-SARS-CoV-2 respiratory viruses from rapid antigen test devices, which could assist in the characterisation and surveillance of circulating respiratory viruses in the community. METHODS: We applied archival clinical nose and throat swabs collected between Jan 1, 2015, and Dec 31, 2022, that previously tested positive for a common respiratory virus (adenovirus, influenza, metapneumovirus, parainfluenza, rhinovirus, respiratory syncytial virus [RSV], or seasonal coronavirus; 132 swabs and 140 viral targets) on PCR to two commercially available COVID-19 rapid antigen test devices, the Panbio COVID-19 Ag Rapid Test Device and Roche SARS-CoV-2 Antigen Self-Test. In addition, we collected 31 COVID-19 rapid antigen test devices used to test patients who were symptomatic at The Royal Melbourne Hospital emergency department in Melbourne, Australia. We extracted total nucleic acid from the device paper test strips and assessed viral recovery using multiplex real-time PCR (rtPCR) and capture-based whole genome sequencing. Sequence and genome data were analysed through custom computational pipelines, including subtyping. FINDINGS: Of the 140 respiratory viral targets from archival samples, 89 (64%) and 88 (63%) were positive on rtPCR for the relevant taxa following extraction from Panbio or Roche rapid antigen test devices, respectively. Recovery was variable across taxa: we detected influenza A in nine of 18 samples from Panbio and seven of 18 from Roche devices; parainfluenza in 11 of 20 samples from Panbio and 12 of 20 from Roche devices; human metapneumovirus in 11 of 16 from Panbio and 14 of 16 from Roche devices; seasonal coronavirus in eight of 19 from Panbio and two of 19 from Roche devices; rhinovirus in 24 of 28 from Panbio and 27 of 28 from Roche devices; influenza B in four of 15 in both devices; and RSV in 16 of 18 in both devices. Of the 31 COVID-19 devices collected from The Royal Melbourne Hospital emergency department, 11 tested positive for a respiratory virus on rtPCR, including one device positive for influenza A virus, one positive for RSV, four positive for rhinovirus, and five positive for SARS-CoV-2. Sequences of target respiratory viruses from archival samples were detected in 55 (98·2%) of 56 samples from Panbio and 48 (85·7%) of 56 from Roche rapid antigen test devices. 98 (87·5%) of 112 viral genomes were completely assembled from these data, enabling subtyping for RSV and influenza viruses. All 11 samples collected from the emergency department had viral sequences detected, with near-complete genomes assembled for influenza A and RSV. INTERPRETATION: Non-SARS-CoV-2 respiratory viruses can be detected and sequenced from COVID-19 rapid antigen devices. Recovery of near full-length viral sequences from these devices provides a valuable opportunity to expand genomic surveillance programmes for public health monitoring of circulating respiratory viruses. FUNDING: Australian Government Medical Research Future Fund and Australian National Health and Medical Research Council.


Assuntos
COVID-19 , Influenza Humana , Metapneumovirus , Infecções por Paramyxoviridae , Vírus Sincicial Respiratório Humano , Humanos , COVID-19/diagnóstico , SARS-CoV-2/genética , Influenza Humana/diagnóstico , Teste para COVID-19 , Austrália , Metapneumovirus/genética , Vírus Sincicial Respiratório Humano/genética , Sequenciamento Completo do Genoma
3.
Microorganisms ; 11(8)2023 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-37630545

RESUMO

Serological diagnostic assays are essential tools for determining an individual's protection against viruses like SARS-CoV-2, tracking the spread of the virus in the community, and evaluating population immunity. To assess the diversity and quality of the anti-SARS-CoV-2 antibody response, we have compared the antibody profiles of people with mild, moderate, and severe COVID-19 using a dot blot assay. The test targeted the four major structural proteins of SARS-CoV-2, namely the nucleocapsid (N), spike (S) protein domains S1 and S2, and receptor-binding domain (RBD). Serum samples were collected from 63 participants at various time points for up to 300 days after disease onset. The dot blot assay revealed patient-specific differences in the anti-SARS-CoV-2 antibody profiles. Out of the 63 participants with confirmed SARS-CoV-2 infections and clinical COVID-19, 35/63 participants exhibited diverse and robust responses against the tested antigens, while 14/63 participants displayed either limited responses to a subset of antigens or no detectable antibody response to any of the antigens. Anti-N-specific antibody levels decreased within 300 days after disease onset, whereas anti-S-specific antibodies persisted. The dynamics of the antibody response did not change during the test period, indicating stable antibody profiles. Among the participants, 28/63 patients with restricted anti-S antibody profiles or undetectable anti-S antibody levels in the dot blot assay also exhibited weak neutralization activity, as measured by a surrogate virus neutralization test (sVNT) and a microneutralization test. These results indicate that in some cases, natural infections do not lead to the production of neutralizing antibodies. Furthermore, the study revealed significant serological variability among patients, regardless of the severity of their COVID-19 illness. These differences need to be carefully considered when evaluating the protective antibody status of individuals who have experienced primary SARS-CoV-2 infections.

4.
Viruses ; 15(7)2023 07 22.
Artigo em Inglês | MEDLINE | ID: mdl-37515292

RESUMO

In most people living with HIV (PLWH) on effective antiretroviral therapy (ART), cell-associated viral transcripts are readily detectable in CD4+ T cells despite the absence of viremia. Quantification of HIV RNA species provides insights into the transcriptional activity of proviruses that persist in cells and tissues throughout the body during ART ('HIV reservoir'). One such technique for HIV RNA quantitation, 'HIV transcription profiling', developed in the Yukl laboratory, measures a series of HIV RNA species using droplet digital PCR. To take advantage of advances in digital (d)PCR, we adapted the 'HIV transcription profiling' technique to Qiagen's dPCR platform (QIAcuity) and compared its performance to droplet digital (dd)PCR (Bio-Rad QX200 system). Using RNA standards, the two technologies were tested in parallel and assessed for multiple parameters including sensitivity, specificity, linearity, and intra- and inter-assay variability. The newly validated dPCR assays were then applied to samples from PLWH to determine HIV transcriptional activity relative to HIV reservoir size. We report that HIV transcriptional profiling was readily adapted to dPCR and assays performed similarly to ddPCR, with no differences in assay characteristics. We applied these assays in a cohort of 23 PLWH and found that HIV reservoir size, based on genetically intact proviral DNA, does not predict HIV transcriptional activity. In contrast, levels of total DNA correlated with levels of most HIV transcripts (initiated, proximally and distally elongated, unspliced, and completed, but not multiply spliced), suggesting that a considerable proportion of HIV transcripts likely originate from defective proviruses. These findings may have implications for measuring and assessing curative strategies and clinical trial outcomes.


Assuntos
Infecções por HIV , HIV-1 , Humanos , DNA Viral/genética , DNA Viral/análise , HIV-1/genética , Reação em Cadeia da Polimerase , Provírus/genética , Linfócitos T CD4-Positivos , RNA Viral/análise , Carga Viral/métodos
5.
J Clin Virol ; 165: 105525, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37364498

RESUMO

BACKGROUND: The recent mpox outbreak has highlighted the need to rapidly diagnose the causative agents of viral vesicular disease to inform treatment and control measures. Common causes of vesicular disease include Monkeypox virus (MPXV), clades I and II, Herpes simplex viruses Type 1 and Type 2 (HSV-1, HSV-2), human herpes virus 6 (HHV-6), Varicella-zoster virus (VZV) and Enteroviruses (EVs). Here, we assessed a syndromic viral vesicular panel for rapid and simultaneous detection of these 7 targets in a single cartridge. OBJECTIVE: The aim of this study was to evaluate the QIAStat-Dx ® viral vesicular (VV) panel and compare with laboratory developed tests (LDTs). Limit of detection, inter-run variability, cross-reactivity and specificity were assessed. Positive and negative percent agreement, and correlation between assays was determined using 124 clinical samples from multiple anatomical sites. RESULTS: The overall concordance between the QIAstat and LDTs was 96%. Positive percent agreement was 82% for HHV-6, 89% for HSV-1 and 100% for MPXV, HSV-2, EV and VZV. Negative percent agreement was 100% for all targets assessed. There was no cross-reactivity with Vaccinia, Orf, Molluscum contagiosum viruses, and a pooled respiratory panel. CONCLUSION: The QIAstat VV multi-target syndromic panel combine ease of use, rapid turnaround, good sensitivity and specificity for enhanced diagnosis, clinical care and public health responses.


Assuntos
Viroses , Vírus , Humanos , Herpes Simples/diagnóstico , Herpesvirus Humano 1/isolamento & purificação , Herpesvirus Humano 2/isolamento & purificação , Herpesvirus Humano 3/isolamento & purificação , Herpesvirus Humano 6/isolamento & purificação , Viroses/diagnóstico , Vírus/isolamento & purificação , Monkeypox virus/isolamento & purificação
7.
J Virol ; 97(6): e0035623, 2023 06 29.
Artigo em Inglês | MEDLINE | ID: mdl-37199648

RESUMO

Influenza C virus (ICV) is increasingly associated with community-acquired pneumonia (CAP) in children and its disease severity is worse than the influenza B virus, but similar to influenza A virus associated CAP. Despite the ubiquitous infection landscape of ICV in humans, little is known about its replication and pathobiology in animals. The goal of this study was to understand the replication kinetics, tissue tropism, and pathogenesis of human ICV (huICV) in comparison to the swine influenza D virus (swIDV) in guinea pigs. Intranasal inoculation of both viruses did not cause clinical signs, however, the infected animals shed virus in nasal washes. The huICV replicated in the nasal turbinates, soft palate, and trachea but not in the lungs while swIDV replicated in all four tissues. A comparative analysis of tropism and pathogenesis of these two related seven-segmented influenza viruses revealed that swIDV-infected animals exhibited broad tissue tropism with an increased rate of shedding on 3, 5, and 7 dpi and high viral loads in the lungs compared to huICV. Seroconversion occurred late in the huICV group at 14 dpi, while swIDV-infected animals seroconverted at 7 dpi. Guinea pigs infected with huICV exhibited mild to moderate inflammatory changes in the epithelium of the soft palate and trachea, along with mucosal damage and multifocal alveolitis in the lungs. In summary, the replication kinetics and pathobiological characteristics of ICV in guinea pigs agree with the clinical manifestation of ICV infection in humans, and hence guinea pigs could be used to study these distantly related influenza viruses. IMPORTANCE Similar to influenza A and B, ICV infections are seen associated with bacterial and viral co-infections which complicates the assessment of its real clinical significance. Further, the antivirals against influenza A and B viruses are ineffective against ICV which mandates the need to study the pathobiological aspects of this virus. Here we demonstrated that the respiratory tract of guinea pigs possesses specific viral receptors for ICV. We also compared the replication kinetics and pathogenesis of huICV and swIDV, as these viruses share 50% sequence identity. The tissue tropism and pathology associated with huICV in guinea pigs are analogous to the mild respiratory disease caused by ICV in humans, thereby demonstrating the suitability of guinea pigs to study ICV. Our comparative analysis revealed that huICV and swIDV replicated differentially in the guinea pigs suggesting that the type-specific genetic differences can result in the disparity of the viral shedding and tissue tropism.


Assuntos
Modelos Animais de Doenças , Gammainfluenzavirus , Cobaias , Infecções por Orthomyxoviridae , Thogotovirus , Animais , Humanos , Administração Intranasal , Infecções por Orthomyxoviridae/patologia , Infecções por Orthomyxoviridae/virologia , Receptores Virais
9.
J Clin Virol ; 161: 105424, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36963141

RESUMO

BACKGROUND: The current global mpox virus (MPXV) outbreak has been declared a Public Health Emergency of International Concern by WHO, with more than 80,000 cases confirmed across multiple continents. Diagnosis is confirmed by PCR of viral DNA from vesicle and other swabs. OBJECTIVE: The aim of this study was to assess commercial RT PCR assays for Orthopoxvirus (OPX) and MPXV for analytical sensitivity, and percent agreements and compare them to primer/probe sets employed at the Victorian Infectious Diseases Reference Laboratory (VIDRL), Centers for Disease Control andPrevention (CDC) and US Army Medical Research Institute of Infectious Diseases (USAMRIID). Limits of detection (LOD), intra-run variability, cross-reactivity and performance on forty clinical samples was assessed on eleven commercial assays and five primer/probe combinations used at VIDRL, CDC and USAMRIID. RESULTS: All assays were able to detect OPX and MPXV (LOD 57 to 14,495 copies/mL) with intra-run coefficients of variation between Cycle thresholds of 0.58 and 3.44, and there was no unexpected cross-reactivity. All assays demonstrated 100% negative percent agreement with clinical samples and all but one yielded 100% positive percent agreement. CONCLUSIONS: Variations in LOD between assays may be dependent on the platform used and sample type. Despite the overall comparable performance of the assays assessed, it is important that routine laboratories perform in-house validations before implementing RT PCR for OPX and/or MPXV as reliable and accurate laboratory diagnosis of MPXV and isolation is crucial to containing the spread of this current outbreak and informing public health interventions and response.


Assuntos
Doenças Transmissíveis , Mpox , Humanos , Monkeypox virus/genética , Sensibilidade e Especificidade , Reação em Cadeia da Polimerase , Limite de Detecção , Mpox/diagnóstico
10.
Talanta Open ; 7: 100187, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-36718384

RESUMO

Aggressive diagnostic testing remains an indispensable strategy for health and aged care facilities to prevent the transmission of SARS-CoV-2 in vulnerable populations. The preferred diagnostic platform has shifted towards COVID-19 rapid antigen tests (RATs) to identify the most infectious individuals. As such, RATs are being manufactured faster than at any other time in our history yet lack the relevant quantitative analytics required to inform on absolute analytical sensitivity enabling manufacturers to maintain high batch-to-batch reproducibility, and end-users to accurately compare brands for decision making. Here, we describe a novel reference standard to measure and compare the analytical sensitivity of RATs using a recombinant GFP-tagged nucleocapsid protein (NP-GFP). Importantly, we show that the GFP tag does not interfere with NP detection and provides several advantages affording streamlined protein expression and purification in high yields as well as faster, cheaper and more sensitive quality control measures for post-production assessment of protein solubility and stability. Ten commercial COVID-19 RATs were evaluated and ranked using NP-GFP as a reference standard. Analytical sensitivity data of the selected devices as determined with NP-GFP did not correlate with those reported by the manufacturers using the median tissue culture infectious dose (TCID50) assay. Of note, TCID50 discordance has been previously reported. Taken together, our results highlight an urgent need for a reliable reference standard for evaluation and benchmarking of the analytical sensitivity of RAT devices. NP-GFP is a promising candidate as a reference standard that will ensure that RAT performance is accurately communicated to healthcare providers and the public.

12.
Lancet Reg Health West Pac ; 26: 100533, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35821908

RESUMO

Background: Regular repeat surveillance testing is a strategy to identify asymptomatic individuals with SARS-CoV-2 infections in high-risk work settings to prevent onward community transmission. Saliva sampling is less invasive compared to nasal/oropharyngeal sampling, thus making it suitable for regular testing. In this multi-centre evaluation, we aimed to validate RT-PCR using salivary swab testing of SARS-CoV-2 for large-scale surveillance testing and assess implementation amongst staff working in the hotel quarantine system in Victoria, Australia. Methods: A multi-centre laboratory evaluation study was conducted to systematically validate the in vitro and clinical performance of salivary swab RT-PCR for implementation of SARS-CoV-2 surveillance testing. Analytical sensitivity for multiple RT-PCR platforms was assessed using a dilution series of known SARS-CoV-2 viral loads, and assay specificity was examined using a panel of viral pathogens other than SARS-CoV-2. In addition, we tested capacity for large-scale saliva testing using a four-sample pooling approach, where positive pools were subsequently decoupled and retested. Regular, frequent self-collected saliva swab RT-PCR testing was implemented for staff across fourteen quarantine hotels. Samples were tested at three diagnostic laboratories validated in this study, and results were provided back to staff in real-time. Findings: The agreement of self-collected saliva swabs for RT-PCR was 84.5% (95% CI 68.6 to 93.8) compared to RT-PCR using nasal/oropharyngeal swab samples collected by a healthcare practitioner, when saliva samples were collected within seven days of symptom onset. Between 7th December 2020 and 17th December 2021, almost 500,000 RT-PCR tests were performed on saliva swabs self-collected by 102 staff working in quarantine hotels in Melbourne. Of these, 20 positive saliva swabs were produced by 13 staff (0.004%). The majority of staff that tested positive occurred during periods of community transmission of the SARS-CoV-2 Delta variant. Interpretation: Salivary RT-PCR had an acceptable level of agreement compared to standard nasal/oropharyngeal swab RT-PCR within early symptom onset. The scalability, tolerability and ease of self-collection highlights utility for frequent or repeated testing in high-risk settings, such as quarantine or healthcare environments where regular monitoring of staff is critical for public health, and protection of vulnerable populations. Funding: This work was funded by the Victorian Department of Health.

13.
Emerg Infect Dis ; 28(8): 1713-1715, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35876533

RESUMO

During a mouse plague in early 2021, a farmer from New South Wales, Australia, sought treatment for aseptic meningitis and was subsequently diagnosed with locally acquired lymphocytic choriomeningitis virus infection. Whole-genome sequencing identified a divergent and geographically distinct lymphocytic choriomeningitis virus strain compared with other published sequences.


Assuntos
Coriomeningite Linfocítica , Meningite Asséptica , Animais , Austrália/epidemiologia , Coriomeningite Linfocítica/diagnóstico , Coriomeningite Linfocítica/epidemiologia , Vírus da Coriomeningite Linfocítica/genética , Camundongos , New South Wales/epidemiologia
14.
Pathology ; 54(5): 623-628, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35778288

RESUMO

During the COVID-19 pandemic, the reverse transcriptase-quantitative polymerase chain reaction (RT-qPCR) assay has been the primary method of diagnosis of SARS-CoV-2 infection. However, RT-qPCR assay interpretation can be ambiguous with no universal absolute cut-off value to determine sample positivity, which particularly complicates the analysis of samples with high Ct values, or weak positives. Therefore, we sought to analyse factors associated with weak positive SARS-CoV-2 diagnosis. We analysed sample data associated with all positive SARS-CoV-2 RT-qPCR diagnostic tests performed by the Victorian Infectious Diseases Reference Laboratory (VIDRL) in Melbourne, Australia, during the Victorian first wave (22 January 2020-30 May 2020). A subset of samples was screened for the presence of host DNA and RNA using qPCR assays for CCR5 and 18S, respectively. Assays targeting the viral RNA-dependent RNA polymerase (RdRp) had higher Ct values than assays targeting the viral N and E genes. Weak positives were not associated with the age or sex of individuals' samples nor with reduced levels of host DNA and RNA. We observed a relationship between Ct value and time post-SARS-CoV-2 diagnosis. High Ct value or weak positive SARS-CoV-2 was not associated with any particular bias including poor biological sampling.


Assuntos
COVID-19 , SARS-CoV-2 , COVID-19/diagnóstico , Teste para COVID-19 , Técnicas de Laboratório Clínico/métodos , Humanos , Pandemias , RNA Viral/análise , RNA Viral/genética , DNA Polimerase Dirigida por RNA/genética , Reação em Cadeia da Polimerase em Tempo Real/métodos , Reação em Cadeia da Polimerase Via Transcriptase Reversa , SARS-CoV-2/genética , Sensibilidade e Especificidade
15.
Front Immunol ; 13: 883612, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35655773

RESUMO

Plasma samples taken at different time points from donors who received either AstraZeneca (Vaxzevria) or Pfizer (Comirnaty) or Moderna (Spikevax) coronavirus disease-19 (COVID-19) vaccine were assessed in virus neutralization assays against Delta and Omicron variants of concern and a reference isolate (VIC31). With the Pfizer vaccine there was 6-8-fold reduction in 50% neutralizing antibody titres (NT50) against Delta and VIC31 at 6 months compared to 2 weeks after the second dose; followed by 25-fold increase at 2 weeks after the third dose. Neutralisation of Omicron was only consistently observed 2 weeks after the third dose, with most samples having titres below the limit of detection at earlier timepoints. Moderna results were similar to Pfizer at 2 weeks after the second dose, while the titres for AstraZeneca samples derived from older donors were 7-fold lower against VIC31 and below the limit of detection against Delta and Omicron. Age and gender were not found to significantly impact our results. These findings indicate that vaccine matching may be needed, and that at least a third dose of these vaccines is necessary to generate sufficient neutralising antibodies against emerging variants of concern, especially Omicron, amidst the challenges of ensuring vaccine equity worldwide.


Assuntos
COVID-19 , Vacinas Virais , COVID-19/prevenção & controle , Vacinas contra COVID-19 , Humanos , SARS-CoV-2 , Vacinas de Produtos Inativados
16.
Euro Surveill ; 27(22)2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35656835

RESUMO

Rapid diagnosis and whole genome sequencing confirmed a case of monkeypox in an HIV-positive individual receiving antiretroviral therapy. The patient had a normal CD4+ T-cell count and suppressed HIV viral load and presented with a genital rash in Melbourne, Australia after return from Europe in May 2022. He subsequently developed systemic illness and disseminated rash and 11 days after symptom onset, he was hospitalised to manage painful bacterial cellulitis of the genital area.


Assuntos
Exantema , Infecções por HIV , Mpox , Exantema/etiologia , Genitália , Infecções por HIV/complicações , Infecções por HIV/diagnóstico , Infecções por HIV/tratamento farmacológico , Humanos , Masculino , Mpox/diagnóstico , Carga Viral
18.
mSphere ; 7(3): e0091321, 2022 06 29.
Artigo em Inglês | MEDLINE | ID: mdl-35491827

RESUMO

New variants of SARS-CoV-2 are continuing to emerge and dominate the global sequence landscapes. Several variants have been labeled variants of concern (VOCs) because they may have a transmission advantage, increased risk of morbidity and/or mortality, or immune evasion upon a background of prior infection or vaccination. Placing the VOCs in context with the underlying variability of SARS-CoV-2 is essential in understanding virus evolution and selection pressures. Dominant genome sequences and the population genetics of SARS-CoV-2 in nasopharyngeal swabs from hospitalized patients were characterized. Nonsynonymous changes at a minor variant level were identified. These populations were generally preserved when isolates were amplified in cell culture. To place the Alpha, Beta, Delta, and Omicron VOCs in context, their growth was compared to clinical isolates of different lineages from earlier in the pandemic. The data indicated that the growth in cell culture of the Beta variant was more than that of the other variants in Vero E6 cells but not in hACE2-A549 cells. Looking at each time point, Beta grew more than the other VOCs in hACE2-A549 cells at 24 to 48 h postinfection. At 72 h postinfection there was no difference in the growth of any of the variants in either cell line. Overall, this work suggested that exploring the biology of SARS-CoV-2 is complicated by population dynamics and that these need to be considered with new variants. In the context of variation seen in other coronaviruses, the variants currently observed for SARS-CoV-2 are very similar in terms of their clinical spectrum of disease. IMPORTANCE SARS-CoV-2 is the causative agent of COVID-19. The virus has spread across the planet, causing a global pandemic. In common with other coronaviruses, SARS-CoV-2 genomes can become quite diverse as a consequence of replicating inside cells. This has given rise to multiple variants from the original virus that infected humans. These variants may have different properties and in the context of a widespread vaccination program may render vaccines less effective. Our research confirms the degree of genetic diversity of SARS-CoV-2 in patients. By comparing the growth of previous variants to the pattern seen with four variants of concern (VOCs) (Alpha, Beta, Delta, and Omicron), we show that, at least in cells, Beta variant growth exceeds that of Alpha, Delta, and Omicron VOCs at 24 to 48 h in both Vero E6 and hACE2-A549 cells, but by 72 h postinfection, the amount of virus is not different from that of the other VOCs.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , Pandemias , Fenótipo , SARS-CoV-2/genética
19.
Viruses ; 14(4)2022 04 13.
Artigo em Inglês | MEDLINE | ID: mdl-35458530

RESUMO

As existing vaccines fail to completely prevent COVID-19 infections or community transmission, there is an unmet need for vaccines that can better combat SARS-CoV-2 variants of concern (VOC). We previously developed highly thermo-tolerant monomeric and trimeric receptor-binding domain derivatives that can withstand 100 °C for 90 min and 37 °C for four weeks and help eliminate cold-chain requirements. We show that mice immunised with these vaccine formulations elicit high titres of antibodies that neutralise SARS-CoV-2 variants VIC31 (with Spike: D614G mutation), Delta and Omicron (BA.1.1) VOC. Compared to VIC31, there was an average 14.4-fold reduction in neutralisation against BA.1.1 for the three monomeric antigen-adjuvant combinations and a 16.5-fold reduction for the three trimeric antigen-adjuvant combinations; the corresponding values against Delta were 2.5 and 3.0. Our findings suggest that monomeric formulations are suitable for upcoming Phase I human clinical trials and that there is potential for increasing the efficacy with vaccine matching to improve the responses against emerging variants. These findings are consistent with in silico modelling and AlphaFold predictions, which show that, while oligomeric presentation can be generally beneficial, it can make important epitopes inaccessible and also carries the risk of eliciting unwanted antibodies against the oligomerisation domain.


Assuntos
Vacinas contra COVID-19 , COVID-19 , Animais , Anticorpos Neutralizantes , Anticorpos Antivirais , COVID-19/prevenção & controle , Humanos , Camundongos , SARS-CoV-2/genética , Glicoproteína da Espícula de Coronavírus/genética
20.
Lancet Infect Dis ; 22(6): 857-866, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35305317

RESUMO

BACKGROUND: In animal, epidemiological, and human challenge studies, a pre-existing T-cell response to internal proteins of influenza A has been associated with improved virological and disease outcomes. The aim of this study was to assess whether inducing additional responses to conserved CD4 and CD8 T-cell antigens provides added benefit to standard influenza vaccination. METHODS: We designed a phase 2b, randomised, placebo-controlled, double-blind trial of a recombinant viral-vectored vaccine (modified vaccinia Ankara expressing virus nucleoprotein and matrix protein 1; MVA-NP+M1), which has been shown to induce both CD4 and CD8 T cells, at eight outpatient clinical trial sites in Australia over two consecutive influenza seasons. We recruited non-immunosuppressed adults (≥18 years) who had received the 2019 quadrivalent influenza vaccine (QIV) vaccine within 28 days before study enrolment and randomisation (day 0). Participants were randomly assigned (1:1) according to a computer-generated random sequence to receive one dose of 1·5 × 108 plaque-forming units of MVA-NP+M1 or saline (placebo) intramuscularly. Randomisation was stratified by age (<65 years or ≥65 years). The patients and trial assessors were masked to treatment assignment. During the subsequent influenza seasons, participants with symptoms related to respiratory illness or influenza-like illness were to attend the clinic within 72 h of symptom onset for two nasal swabs for influenza testing by quantitative RT-PCR. The primary endpoint was the incidence rate of laboratory-confirmed influenza in the intention-to-treat (ITT) population. Safety (solicited adverse events within 7 days and unsolicited adverse events within 28 days after study vaccination, and serious adverse events for the study duration) was assessed in all randomly assigned participants who received at least one vaccination (according to the treatment received). The trial is registered with ClinicalTrials.gov, NCT03880474. FINDINGS: Between April 2 and June 14, 2019, 2152 adults were randomly allocated and received MVA-NP+M1 (n=1077) or placebo (n=1075), comprising the efficacy (ITT) analysis set. Participants were followed up throughout the 2019 Australia influenza season (May 1 to Oct 15, 2019). 419 (19·5%) of 2152 participants were aged 65 years or older. The incidence of laboratory-confirmed influenza did not differ between the MVA-NP+M1 group (35 of 1077 participants; 3·25% [95% CI 2·31-4·44]) and the placebo group (23 of 1075; 2·14% [1·39-3·14]; Fisher's exact p=0·14). 23 severe solicited local injection site reactions were reported in 13 (0·6%) of 2152 participants, 22 of which were reported in the MVA-NP + M1 group (in 12 [1·1%] participants). 100 severe systemic events were reported in 45 (4·2%) MVA-NP + M1 recipients, and 20 were reported in 14 (1·3%) placebo recipients. Three unsolicited grade 3 events in three participants (two headache and one nausea, all in the MVA-NP+M1 group) were deemed vaccine related. 21 serious adverse events were reported in 18 (1·7%) of 1077 participants in the MVA-NP+M1 group and 25 serious adverse events were reported in 22 (2·0%) of 1075 participants in the placebo group; none were considered vaccine related. The trial was stopped after one season for futility on the recommendation of the data monitoring committee. INTERPRETATION: MVA-NP+M1 was well tolerated with no vaccine-associated serious adverse events. A vaccine designed to induce moderate T-cell responses to the cross-reactive internal proteins of influenza A did not lead to improved incidence when given within 28 days after standard QIV immunisation. A greater magnitude of T-cell response with a different vaccine or regimen, or localisation in the lungs via alternative delivery, such as intranasal or aerosol, might be successful and require further investigation. FUNDING: Vaccitech.


Assuntos
Vacinas contra Influenza , Influenza Humana , Animais , Método Duplo-Cego , Humanos , Vacinas contra Influenza/efeitos adversos , Influenza Humana/prevenção & controle , Estações do Ano , Vacinação , Vacinas Combinadas , Vaccinia virus
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA