Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Biomacromolecules ; 21(5): 1824-1831, 2020 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-32011867

RESUMO

Cellulose aerogel microparticles were made via emulsification/nonsolvent induced phase separation/drying with supercritical CO2. Cellulose was dissolved in NaOH-based solvent with and without additives in order to control solution gelation. Two emulsions, cellulose solution/oil and cellulose nonsolvent/oil, were mixed to start nonsolvent induced phase separation (or coagulation) of cellulose inside each cellulose droplet leading to the formation of so-called microgels. Different options of triggering coagulation were tested, by coalescence of droplets of cellulose solution and cellulose nonsolvent and by diffusion of nonsolvent partly soluble in the oil, accompanied by coalescence. The second option was found to be the most efficient for stabilization of the shape of coagulated cellulose microgels. The influence of gelation on particle formation and aerogel properties was investigated. The aerogel particles' diameter was around a few tens of microns, and the specific surface area was 250-350 m2/g.


Assuntos
Celulose , Dessecação , Emulsões , Solventes
2.
Biomacromolecules ; 18(12): 4232-4239, 2017 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-29068674

RESUMO

Starch aerogels were prepared via dissolution in water (thermomechanical treatment), retrogradation, solvent exchange, and drying with supercritical CO2. Amylose content in starches was varied from 0 to 100%. The aerogels' bulk density, morphology, specific surface area, thermal conductivity, and mechanical properties under compression were investigated. Pea starch aerogels had one of the highest specific surface area and lowest density and thermal conductivity (0.021-0.023 W/m·K), with the latter indicating that a new thermal superinsulation material was obtained. A detailed study of the influence of processing parameters on pea starch aerogels properties showed the importance of retrogradation time which decreases specific surface area and increases mechanical properties and thermal conductivity. Finally, a comparison of starch aerogel thermal conductivity with that of other bioaerogels is performed.


Assuntos
Géis/química , Amido/química , Amilose/química , Solventes/química , Condutividade Térmica , Água/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA