Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Environ Sci Technol ; 39(6): 1778-90, 2005 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-15819238

RESUMO

A pilot-scale demonstration of surfactant-enhanced aquifer remediation (SEAR) was conducted to recover dense nonaqueous phase liquid (DNAPL) tetrachloroethene (PCE) from a sandy glacial outwash aquifer underlying a former dry cleaning facility at the Bachman Road site in Oscoda, MI. Part one of this two-part paper describes site characterization efforts and a comprehensive approach to SEAR test design, effectively integrating laboratory and modeling studies. Aquifer coring and drive point sampling suggested the presence of PCE-DNAPL in a zone beneath an occupied building. A narrow PCE plume emanating from the vicinity of this building discharges into Lake Huron. The shallow unconfined aquifer, characterized by relatively homogeneous fine-medium sand deposits, an underlying clay layer, and the absence of significant PCE transformation products, was judged suitable for the demonstration of SEAR. Tween 80 was selected for application based upon its favorable solubilization performance in batch and two-dimensional sand tank treatability studies, biodegradation potential, and regulatory acceptance. Three-dimensional flow and transport models were employed to develop a robust design for surfactant delivery and recovery. Physical and fiscal constraints led to an unusual hydraulic design, in which surfactant was flushed across the regional groundwater gradient, facilitating the delivery of concentrations of Tween 80 exceeding 1% (wt) throughout the treatment zone. The potential influence of small-scale heterogeneity on PCE-DNAPL distribution and SEAR performance was assessed through numerical simulations incorporating geostatistical permeability fields based upon available core data. For the examined conditions simulated PCE recoveries ranged from 94to 99%. The effluent treatment system design consisted of low-profile air strippers coupled with carbon adsorption to trap off-gas PCE and discharge of treated aqueous effluent to a local wastewater treatment plant. The systematic and comprehensive design methodology described herein may serve as a template for application at other DNAPL sites.


Assuntos
Carcinógenos/química , Resíduos Perigosos , Modelos Teóricos , Poluentes do Solo/isolamento & purificação , Tetracloroetileno/química , Poluentes Químicos da Água/isolamento & purificação , Adsorção , Carbono , Solubilidade
2.
Environ Sci Technol ; 39(6): 1791-801, 2005 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-15819239

RESUMO

A pilot-scale demonstration of surfactant-enhanced aquifer remediation (SEAR) was conducted during the summer of 2000 at the Bachman Road site in Oscoda, MI. Part two of this two-part paper describes results from partitioning and nonpartitioning tracer tests, SEAR operations, and post-treatment monitoring. For this field test, 68 400 L of an aqueous solution of 6% (wt) Tween 80 were injected to recover tetrachloroethene-nonaqueous phase liquid (PCE-DNAPL) from a shallow, unconfined aquifer. Results of a nonreactive tracer test, conducted prior to introducing the surfactant solution, demonstrate target zone sweep and hydraulic control, confirming design-phase model predictions. Partitioning tracer test results suggest PCE-DNAPL saturations of up to 0.74% within the pilot-scale treatment zone, consistent with soil core data collected during site characterization. Analyses of effluent samples taken from the extraction well during SEAR operations indicate that a total of 19 L of PCE and 95% of the injected surfactant were recovered. Post-treatment monitoring indicated that PCE concentrations at many locations within the treated zone were reduced by as much as 2 orders of magnitude from pre-SEAR levels and had not rebounded 450 days after SEAR operations ceased. Pilot-scale costs ($365 900) compare favorably with design-phase cost estimates, with approximately 10% of total costs attributable to the intense sampling density and frequency. Results of this pilot-scale test indicate that careful design and implementation of SEAR can result in effective DNAPL mass removal and a substantial reduction in aqueous concentrations within the treated source zone under favorable geologic conditions


Assuntos
Carcinógenos/química , Modelos Teóricos , Poluentes do Solo/isolamento & purificação , Tensoativos/química , Tetracloroetileno/química , Poluentes Químicos da Água/isolamento & purificação , Previsões , Solubilidade , Movimentos da Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA