Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Breath Res ; 14(3): 036004, 2020 05 27.
Artigo em Inglês | MEDLINE | ID: mdl-32155613

RESUMO

The Respiration Collector for In Vitro Analysis (ReCIVA) sampler, marketed by Owlstone Medical, provides a step forward in exhaled breath sampling through active sampling directly onto thermal desorption (TD) tubes. Although an improvement to the issues surrounding breath bag sampling, the ReCIVA device, first released in 2015, is a relatively new research and clinical tool that requires further exploration. Here, data are presented comparing two distinct ReCIVA devices. The results, comparing ReCIVA serial numbers #33 and #65, demonstrate that overall statistically insignificant results are obtained via targeted isoprene quantitation (p > 0.05). However, when the data are parsed by the TD tube type used to capture breath volatiles, either Tenax TA or the dual bed Tenax/Carbograph 5TD (5TD), a statistical difference (p < 0.05) among the two different TD tubes was present. These data, comparing the two ReCIVA devices with both Tenax TA and 5TD tubes, are further supported by a global metabolomics analysis yielding 85% of z-scores, comparing ReCIVA devices, below the limit for significance. Experiments to determine the effect of breathing rate on ReCIVA function, using guided breathing for low (7.5 breaths min-1) and high (15 breaths min-1) breathing rates, demonstrate the ReCIVA device shows no statistical difference among breathing rates for quantitated isoprene (p > 0.05). Global metabolomics analysis of the guided breathing rate data shows more than 87% of the z-scores, comparing high and low breathing rates using both the Tenax and the 5TD tubes, are below the level for significance. Finally, data are provided from a single participant who displayed background levels of isoprene while illustrating levels of acetone consistent with the remaining participants. Collectively, these data support the use of multiple ReCIVA devices for exhaled breath collection and provide evidence for an instance where exhaled isoprene is consistent with background levels.


Assuntos
Testes Respiratórios/instrumentação , Manejo de Espécimes/instrumentação , Temperatura , Butadienos/análise , Expiração , Hemiterpenos/análise , Humanos , Masculino , Padrões de Referência , Compostos Orgânicos Voláteis/análise
2.
J Breath Res ; 14(1): 016009, 2019 12 16.
Artigo em Inglês | MEDLINE | ID: mdl-31703231

RESUMO

Due to several sources of potential variability associated with exhaled breath bag sampling procedures for off-line analysis, the Respiration Collector for in vitro Analysis (ReCIVA) sampler was developed. Although designed to improve upon several pitfalls of sampling with exhaled breath bags, the ReCIVA remains a minimally studied research tool. In this manuscript, several attributes of the ReCIVA sampler are investigated among three individual tests, such as background contamination, control software version, performance of different adsorbent tubes, duplicate sample production, and comparison to exhaled breath bags. The data shows greater than a 58% reduction in background siloxanes can be achieved with submersion of ReCIVA masks in ethyl alcohol or baking the masks at a high temperature (200 °C). The results illustrate the ReCIVA control software version plays a key role in the flow rates applied to thermal desorption (TD) tubes. Using exhaled isoprene as a representative analyte, the data suggest duplicate samples among ReCIVA pump banks can be achieved using two different thermal desorption tubes, Tenax TA and Tenax/Carbograph 5TD, when using an updated control software and manually calibrating the ReCIVA pumps to uniform flow rates (Tenax p = 0.3869, 5TD p = 0.3131). Additionally, using the updated control software and manual ReCIVA flow calibration, the data suggest the ReCIVA can produce statistically similar results among TD tube types (p = 0.3824) and compared to standard exhaled breath bags (p = 0.1534). Collectively, these results establish a method for manually calibrating the flow of the ReCIVA device to allow for the most consistent results. These data support further experimentation into the use of the ReCIVA sampler for exhaled breath research.


Assuntos
Testes Respiratórios/métodos , Butadienos/análise , Calibragem , Expiração , Hemiterpenos/análise , Humanos , Masculino , Padrões de Referência , Siloxanas/química , Manejo de Espécimes
3.
J Breath Res ; 11(4): 047111, 2017 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-29018179

RESUMO

Hypoxia-like incidents in-flight have increased over the past decade causing severe safety concerns across the aviation community. As a result, the need to monitor flight crews in real-time for the onset of hypoxic conditions is paramount for continued aeronautical safety. Here, hypoxic events were simulated in the laboratory via a reduced oxygen-breathing device to determine the effect of recovery gas oxygen concentration (21% and 100%) on exhaled breath volatile organic compound composition. Data from samples collected both serially (throughout the exposure), prior to, and following exposures yielded 326 statistically significant features, 203 of which were unique. Of those, 72 features were tentatively identified while 51 were verified with authentic standards. A comparison of samples collected serially between recovery and hypoxia time points shows a statistically significant reduction in exhaled breath isoprene (2-methyl-1,3-butadiene, log2 FC -0.399, p = 0.005, FDR = 0.034, q = 0.033), however no significant difference in isoprene abundance was observed when comparing recovery gases (21% or 100% O2, p = 0.152). Furthermore, examination of pre-/post-exposure 1 l bag breath samples illustrate an overall increase in exhaled isoprene abundance post-exposure (log2 FC 0.393, p = 0.005, FDR = 0.094, q = 0.033) but again no significant difference between recovery gas (21% and 100%, p = 0.798) was observed. A statistically significant difference in trend was observed between isoprene abundance and recovery gases O2 concentration when plotted against minimum oxygen saturation (p = 0.0419 100% O2, p = 0.7034 21% O2). Collectively, these results suggest exhaled isoprene is dynamic in the laboratory ROBD setup and additional experimentation will be required to fully understand the dynamics of isoprene in response to acute hypoxic stress.


Assuntos
Testes Respiratórios/métodos , Butadienos/análise , Expiração , Hemiterpenos/análise , Hipóxia/diagnóstico , Pentanos/análise , Estresse Fisiológico , Adulto , Humanos , Hipóxia/sangue , Masculino , Oxigênio/sangue , Padrões de Referência , Fatores de Tempo , Adulto Jovem
4.
J Breath Res ; 9(4): 047103, 2015 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-26505091

RESUMO

Pilots have reported experiencing in-flight hypoxic-like symptoms since the inception of high-altitude aviation. As a result, the need to monitor pilots, in-flight, for the onset of hypoxic conditions is of great interest to the aviation community. We propose that exhaled breath is an appropriate non-invasive medium for monitoring pilot hypoxic risk through volatile organic compound (VOC) analysis. To identify changes in the exhaled breath VOCs produced during periods of reduced O2 levels, volunteers were exposed to simulated flight profiles, i.e. sea level for 5 min, O2 levels found at elevated altitudes for 5 min or placebo and 5 min at 100% O2 recovery gas, using a modified flight mask interfaced with a reduced O2 breathing device. During the course of these test events, time series breath samples from the flight mask and pre/post bag samples were collected and analyzed by gas chromatography/mass spectrometry (GC/MS). Seven compounds (pentanal, 4-butyrolactone, 2-pentanone, 2-hexanone, 2-cyclopenten-1-one, 3-methylheptane and 2-heptanone) were found to significantly change in response to hypoxic conditions. Additionally, the isoprene, 2-methyl-1,3-butadiene, was found to increase following the overall exposure profile. This study establishes an experimental means for monitoring changes in VOCs in response to hypoxic conditions, a computational workflow for compound analysis via the Metabolite Differentiation and Discovery Lab and MatLab(©) software and identifies potential volatile organic compound biomarkers of hypoxia exposure.


Assuntos
Biomarcadores/análise , Testes Respiratórios/métodos , Expiração , Hipóxia/diagnóstico , Adulto , Butadienos/análise , Cromatografia Gasosa-Espectrometria de Massas/métodos , Hemiterpenos/análise , Humanos , Masculino , Metaboloma , Oxigênio/análise , Pentanos/análise , Reprodutibilidade dos Testes , Fatores de Tempo , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA