Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
BMC Neurol ; 24(1): 86, 2024 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-38438839

RESUMO

BACKGROUND: The global prevalence of VCI has increased steadily in recent years, but diagnostic biomarkers for VCI in patients with non-disabling ischemic cerebrovascular incidents (NICE) remain indefinite. The primary objective of this research was to investigate the relationship between peripheral serological markers, white matter damage, and cognitive function in individuals with NICE. METHODS: We collected clinical data, demographic information, and medical history from 257 patients with NICE. Using the MoCA upon admission, patients were categorized into either normal cognitive function (NCF) or VCI groups. Furthermore, they were classified as having mild white matter hyperintensity (mWMH) or severe WMH based on Fazekas scores. We then compared the levels of serological markers between the cognitive function groups and the WMH groups. RESULTS: Among 257 patients with NICE, 165 were male and 92 were female. Lymphocyte count (OR = 0.448, P < 0.001) and LDL-C/HDL-C (OR = 0.725, P = 0.028) were protective factors for cognitive function in patients with NICE. The sWMH group had a higher age and inflammation markers but a lower MoCA score, and lymphocyte count than the mWMH group. In the mWMH group, lymphocyte count (AUC = 0.765, P < 0.001) and LDL-C/HDL-C (AUC = 0.740, P < 0.001) had an acceptable diagnostic value for the diagnosis of VCI. In the sWMH group, no significant differences were found in serological markers between the NCF and VCI groups. CONCLUSION: Lymphocyte count, LDL-C/HDL-C were independent protective factors for cognitive function in patients with NICE; they can be used as potential biological markers to distinguish VCI in patients with NICE and are applicable to subgroups of patients with mWMH.


Assuntos
Leucoaraiose , Substância Branca , Humanos , Feminino , Masculino , LDL-Colesterol , Substância Branca/diagnóstico por imagem , Cognição , Hospitalização , Inflamação/epidemiologia
2.
CNS Neurosci Ther ; 30(3): e14666, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38468126

RESUMO

AIM: To explore the neuroprotective potential of hyperforin and elucidate its underlying molecular mechanisms involved in its therapeutic effects against vascular cognitive impairment (VCI). METHODS: The active compounds and possible targets of Hypericum perforatum L. that may be effective against VCI were found by network pharmacology in this research. We utilized bilateral common carotid artery occlusion (BCCAO) surgery to induce a VCI mouse model. Morris water maze (MWM) and Y-maze tests were used to assess VCI mice's cognitive abilities following treatment with hyperforin. To evaluate white matter lesions (WMLs), we utilized Luxol fast blue (LFB) stain and immunofluorescence (IF). Neuroinflammation was assessed using IF, western blot (WB), and enzyme-linked immunosorbent assay (ELISA). The effects of hyperforin on microglia were investigated by subjecting the BV2 microglial cell line to oxygen-glucose deprivation/reperfusion (OGD/R) stimulation. The expressions of VEGFR2 , p-SRC, SRC, VEGFA, and inflammatory markers including IL-10, IL-1ß, TNF-α, and IL-6 were subsequently assessed. RESULTS: The VEGFR2 /SRC signaling pathway is essential for mediating the protective properties of hyperforin against VCI according to network pharmacology analysis. In vivo findings demonstrated that hyperforin effectively improved BCCAO-induced cognitive impairment. Furthermore, staining results showed that hyperforin attenuated WMLs and reduced microglial activation in VCI mice. The hyperforin treatment group's ELISA results revealed a substantial decrease in IL-1ß, IL-6, and TNF-α levels. According to the results of in vitro experiments, hyperforin decreased the release of pro-inflammatory mediators (TNF-α, IL-6, and IL-1ß) and blocked microglial M1-polarization by modulating the VEGFR2 /SRC signaling pathway. CONCLUSION: Hyperforin effectively modulated microglial M1 polarization and neuroinflammation by inhibiting the VEGFR2 /SRC signaling pathways, thereby ameliorating WMLs and cognitive impairment in VCI mice.


Assuntos
Disfunção Cognitiva , Floroglucinol/análogos & derivados , Terpenos , Substância Branca , Camundongos , Animais , Microglia , Doenças Neuroinflamatórias , Fator de Necrose Tumoral alfa/metabolismo , Substância Branca/metabolismo , Interleucina-6/metabolismo , Disfunção Cognitiva/tratamento farmacológico , Disfunção Cognitiva/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA