Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Eur J Med Chem ; 257: 115540, 2023 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-37301075

RESUMO

Colorectal cancer (CRC) is a common malignancy of the gastrointestinal tract with high morbidity and mortality. Our previous studies have demonstrated that indole-chalcone-based compounds targeting tubulin displayed potential cytotoxicity to CRC cells. Herein, three new series of derivatives were systematically designed and synthesized to explore their structure-activity relationship (SAR) against CRC based on prior research. Among them, a representative fluorine-containing analog (FC116) exerted superior efficacy on HCT116 (IC50 = 4.52 nM) and CT26 (IC50 = 18.69 nM) cell lines, and HCT116-xenograft mice with tumor growth inhibition rate of 65.96% (3 mg/kg). Of note, FC116 could also suppress the growth of organoid models (IC50 = 1.8-2.5 nM) and showed adenoma number inhibition rate of 76.25% at the dose of 3 mg/kg in APCmin/+ mice. In terms of mechanism, FC116 could induce endoplasmic reticulum (ER) stress to produce excess reactive oxygen species (ROS), leading to mitochondrial damage to promote the apoptosis of CRC cells by targeting microtubules. Our results support that indole-chalcone compounds are promising tubulin inhibitors and highlight the potential of FC116 to combat CRC.


Assuntos
Chalcona , Chalconas , Neoplasias Colorretais , Humanos , Animais , Camundongos , Tubulina (Proteína)/metabolismo , Chalcona/farmacologia , Chalcona/química , Colchicina/farmacologia , Chalconas/farmacologia , Chalconas/uso terapêutico , Chalconas/química , Ensaios de Seleção de Medicamentos Antitumorais , Proliferação de Células , Sítios de Ligação , Indóis/farmacologia , Indóis/química , Neoplasias Colorretais/tratamento farmacológico
2.
Bioorg Chem ; 135: 106531, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37043882

RESUMO

Advanced metastatic colorectal cancers (CRCs) are regarded as a challenge in clinical cancer therapy. Our previous studies have demonstrated that a representative fluoro-substituted indole-chalcone (FC116), was obtained to display highly potent activity against CRC using multiple in vitro and in vivo mouse models by targeting microtubules. However, several problems, such as low dose tolerance and highly toxic to the brain and colon, low solubility unsuitable for intravenous (i.v.) administration, are still existed and limit further development. Herein, we developed two series of FC116 derivatives on the 4-methoxyphenyl group by a structure-based design strategy. Among them, FC11619 with an amino terminus maintained the in vitro cytotoxicity against HCT-116 CRC in a low nanomolar range. This compound could induce G2/M phase arrest via regulating cyclin B1 expression, produce excess reactive oxygen species (ROS), and target tubulin in CRC cells. In vivo, FC11619 significantly suppressed tumor growth, achieving 65.3 and 73.4 % at doses of 5 and 10 mg/kg/d (i.v., 21 d), which were much better than 54.1% of Taxol at 7 mg/kg. In addition, this compound showed better in vivo tolerance compared to that of FC116 (only 3 mg/kg tolerance, intraperitoneal, i.p.), and no major organ-related toxicity, especially no apparent degenerated neurons, intestinal obstruction in clinical Taxol standard therapy. Taken together, the 4-amino-substitutedphenyl indole-chalcones represent lead compounds as chemotherapy of CRC for further drug development in this field.


Assuntos
Antineoplásicos , Chalcona , Chalconas , Neoplasias Colorretais , Animais , Camundongos , Chalcona/farmacologia , Chalcona/uso terapêutico , Chalconas/farmacologia , Chalconas/uso terapêutico , Chalconas/química , Apoptose , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Antineoplásicos/química , Neoplasias Colorretais/tratamento farmacológico , Paclitaxel/farmacologia , Indóis/farmacologia , Indóis/uso terapêutico , Indóis/química , Proliferação de Células , Linhagem Celular Tumoral , Estrutura Molecular , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA