Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Cell Biochem Biophys ; 2024 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-38733503

RESUMO

Oxidative stress is involved in the pathological processes of many neurodegenerative diseases. Protein modification by small ubiquitin-like modifiers (SUMOs) has been implicated in oxidative stress injury. By conjugating SUMOs to their selective protein substrates, SUMO ligases play critical roles in regulating functions of proteins involved in oxidative stress injury. In this study, we screened siRNAs to knockdown the SUMO ligase PIAS3 to assess its role in H2O2-induced injury in HT22 cells. H2O2 stimulation increased total protein SUMOylation, facilitated intracellular reactive oxygen species (ROS) release, increased cleaved caspase-3 levels, promoted p38 and JNK activation (phosphorylation), upregulated apoptosis, and decreased cell viability. The siRNA against PIAS3 329-347 (siPIAS3-329) markedly downregulated the protein expression of PIAS3 and reversed these effects, whereas siNC (negative control) had no effect. Our findings demonstrate that PIAS3-mediated SUMOylation facilitates oxidative stress injury and p38/JNK-mediated cell apoptosis and that PIAS3 is a potential target to protect against oxidative stress injury.

2.
Cell Mol Life Sci ; 81(1): 119, 2024 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-38456949

RESUMO

Activated small ubiquitin-like modifiers (SUMOs) have been implicated in neuropathological processes following ischemic stroke. However, the target proteins of SUMOylation and their contribution to neuronal injury remain to be elucidated. MLK3 (mixed-lineage kinase 3), a member of the mitogen-activated protein kinase kinase kinase (MAPKKK) family, is a critical regulator of neuronal lesions following cerebral ischemia. Here, we found that SUMOylation of MLK3 increases in both global and focal ischemic rodent models and primary neuronal models of oxygen and glucose deprivation (OGD). SUMO1 conjugation at the Lys401 site of MLK3 promoted its activation, stimulated its downstream p38/c-Jun N-terminal kinase (JNK) cascades, and led to cell apoptosis. The interaction of MLK3 with PIAS3, a SUMO ligase, was elevated following ischemia and reperfusion. The PINIT domain of PIAS3 was involved in direct interactions with MLK3. Overexpression of the PINIT domain of PIAS3 disrupted the MLK3-PIAS3 interaction, inhibited SUMOylation of MLK3, suppressed downstream signaling, and reduced cell apoptosis and neurite damage. In rodent ischemic models, the overexpression of the PINIT domain reduced brain lesions and alleviated deficits in learning, memory, and sensorimotor functions. Our findings demonstrate that brain ischemia-induced MLK3 SUMOylation by PIAS3 is a potential target against poststroke neuronal lesions and behavioral impairments.


Assuntos
Isquemia Encefálica , Sumoilação , Humanos , MAP Quinase Quinase Quinases/genética , MAP Quinase Quinase Quinase 11 Ativada por Mitógeno , Transdução de Sinais/fisiologia , Isquemia Encefálica/metabolismo , Cognição , Chaperonas Moleculares/metabolismo , Proteínas Inibidoras de STAT Ativados/genética , Proteínas Inibidoras de STAT Ativados/metabolismo
3.
Cell Biochem Biophys ; 81(3): 469-479, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37550525

RESUMO

Activation of mixed lineage kinase 3 (MLK3) by phosphorylation at Thr277/Ser281 stimulates downstream apoptotic pathways and ultimately leads to cell injury. MLK3 is reported to localize to both the cytoplasm and nucleus in human ovarian cancer cells and immortalized ovarian epithelial cells (T80 and T90 cells), and phosphorylation at Thr477 is required for the cytoplasmic retention of MLK3 in T80 cells. However, the subcellular distribution of MLK3 in other cell types has rarely been reported, and whether phosphorylation of MLK3 at Thr277/Ser281 affects its subcellular distribution is unknown. Here, our bioinformatics analysis predicted that MLK3 was mainly distributed in the cytoplasm and nucleus. In the human HEK293T embryonic kidney cell line and murine HT22 hippocampal neuronal cell line, endogenous MLK3 was more abundant in the cytoplasm and less abundant in the nucleus. In addition, overexpressed Myc-tagged MLK3 and EGFP-tagged MLK3 were also observed to localize mainly to the cytoplasm. MLK3 that was activated by phosphorylation at Thr277/Ser281 was mainly distributed in the cytoplasm, and phosphorylation deficient (T277A/S281A) and mimic (T277E/S281E) mutants both showed distributions similar to that of wild type (wt) MLK3, further proving that phosphorylation at Thr277/Ser281 was not involved in regulating MLK3 subcellular localization. In HEK293T cells, H2O2 stimulation accelerated MLK3 phosphorylation (activation), and this phosphorylation was reduced by the antioxidant N-acetylcysteine in a dose-dependent manner. Overexpressing wt MLK3 promoted the production of intracellular reactive oxygen species and increased cell apoptosis, both of which were enhanced by the phosphorylation-mimic (T277E/S281E) MLK3 variant but not by the phosphorylation-deficient (T277A/S281A) MLK3 variant. These findings provided additional evidence for the cytoplasmic and nuclear distribution of MLK3 in HEK293T cells or HT22 cells and revealed the pivotal role of MLK3 in the positive feedback loop of oxidative stress injury.


Assuntos
Peróxido de Hidrogênio , MAP Quinase Quinase Quinases , Humanos , Camundongos , Animais , Retroalimentação , Células HEK293 , MAP Quinase Quinase Quinases/metabolismo , Estresse Oxidativo , Fosforilação , Citoplasma/metabolismo , MAP Quinase Quinase Quinase 11 Ativada por Mitógeno
4.
Int J Neurosci ; 133(8): 888-895, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34818135

RESUMO

PURPOSE: Although amyloid-ß (Aß) is one of the neuropathological hallmarks of Alzheimer's Disease (AD), the mechanisms of Aß neurotoxicity remain to be clarified. This study was aimed to evaluate the effect of Aß on postsynaptic density-95 (PSD-95) tyrosine phosphorylation. Elucidating the regulatory mechanisms underlying it may be a promising therapy in AD. METHODS: Aß25-35 oligomers (20 µg/rat) were administered intracerebroventricularly in adult male Sprague-Dawley rats. PSD-95 tyrosine phosphorylation was assessed using immunoprecipitation followed by immunoblot analysis. Immunoblot was applied for measuring the protein levels of PSD-95 and ß-actin. RESULTS: Following 3, 7, 14, 21 days after oligomeric Aß25-35 treatment, the tyrosine phosphorylation of PSD-95 increased significantly, and peaked at 3 days after oligomeric Aß25-35 treatment in hippocampal CA1 subfield. Src family protein tyrosine kinases (SrcPTKs) specific inhibitor PP2 attenuated the tyrosine phosphorylation of PSD-95 induced by Aß25-35. Amantadine [N-methyl-D-aspartate (NMDA) receptor noncompetitive antagonist], NVP-AAM077 (GluN2A-containing NMDA receptor selective inhibitor) and Ro25-6981 (GluN2B-containing NMDA receptor selective inhibitor) also suppressed the Aß25-35-induced PSD-95 tyrosine phosphorylation. CONCLUSION: These results suggest that Aß oligomers induce the tyrosine phosphorylation of PSD-95 by SrcPTKs, which is mediated by the activation of GluN2A- and GluN2B-containing NMDA receptors.


Assuntos
Doença de Alzheimer , Receptores de N-Metil-D-Aspartato , Animais , Masculino , Ratos , Doença de Alzheimer/metabolismo , Proteína 4 Homóloga a Disks-Large/metabolismo , Hipocampo/metabolismo , Fosforilação , Ratos Sprague-Dawley , Receptores de N-Metil-D-Aspartato/metabolismo , Fatores de Transcrição/metabolismo , Tirosina/metabolismo
5.
FASEB J ; 35(8): e21769, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34288124

RESUMO

Neuronal activity regulates spatial distribution of the SUMOylation system in cytosolic and dendritic sites, which has been implicated in learning, memory, and underlying synaptic structural and functional remodeling in the hippocampus. However, the functional target proteins for activated small ubiquitin-like modifiers (SUMOs) and downstream molecular consequences behind long-term potentiation (LTP) of synaptic plasticity remain to be elucidated. In this study, we showed that N-methyl-D-aspartate receptor-mediated neuronal activity induced the covalent modification of cytosolic Akt1 by small ubiquitin-like modifier 1 (SUMO1) in rat cortical and hippocampal CA1 neurons. Protein inhibitor of activated STAT3 (PIAS3) was involved in the activity-induced Akt1 SUMO1-ylation, and K64 and K276 residues were major SUMOylated sites. Importantly, Akt1 SUMOylation at K64 and K276 enhanced its enzymatic activity and facilitated T308 phosphorylation. Furthermore, the N-terminal SAP domain of PIAS3 bound Akt1 directly. The disruption of Akt1-PIAS3 interaction by Tat-SAP, a synthetic Tat-fused cell-permeable peptide containing PIAS3 SAP domain, inhibited neuronal activity-induced Akt1 SUMOylation and impaired LTP expression and late phase LTP maintenance in the hippocampus. Correlatedly, Tat-SAP not only blocked the LTP-related extracellular signal-regulated kinase (ERK)1/2-Elk-1-brain-derived neurotrophic factor (BDNF)/Arc signaling, but also disrupted mammalian target of rapamycin (mTOR)-eIF4E-binding protein 1 (4E-BP1) pathway. These findings reveal an activity-induced Akt1 SUMOylation by PIAS3 that contributes to ERK1/2-BDNF/Arc and mTOR-4E-BP1 cascades, and in turn, long-lasting excitatory synaptic responses.


Assuntos
Hipocampo , Chaperonas Moleculares/metabolismo , Neurônios , Proteínas Inibidoras de STAT Ativados/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transmissão Sináptica , Animais , Células Cultivadas , Feminino , Células HEK293 , Hipocampo/citologia , Hipocampo/metabolismo , Humanos , Masculino , Neurônios/citologia , Neurônios/metabolismo , Fosforilação , Cultura Primária de Células , Ratos , Ratos Sprague-Dawley , Sumoilação
6.
Antioxid Redox Signal ; 32(1): 18-34, 2020 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-31642335

RESUMO

Aims: Neuronal nitric oxide synthase (nNOS) and nitric oxide (NO) signaling have been implicated in learning, memory, and underlying long-lasting synaptic plasticity. In this study, we aimed at detecting whether nNOS is a target protein of SUMOylation in the hippocampus and its contributions to hippocampal long-term potentiation (LTP) of synaptic transmission. Results: We showed that N-methyl-d-aspartate receptor-dependent neuronal activity enhancement induced the attachment of small ubiquitin-like modifier 1 (SUMO1) to nNOS. Protein inhibitor of activated STAT3 (PIAS3) promoted SUMO1 conjugation at K725 and K739 on nNOS, which upregulated NO production and nNOS S1412 phosphorylation (activation). In addition, the N-terminus (amino acids 43-86) of PIAS3 bound nNOS directly. Tat-tagged PIAS3 segment representing amino acids 43-86, a cell-permeable peptide containing PIAS3 residues 43-86, suppressed activity-induced nNOS SUMOylation by disrupting PIAS3-nNOS association. It also decreased LTP-related expression of Arc and brain-derived neurotrophic factor and blocked signaling via extracellular signal-regulated kinase (ERK) 1/2 and Elk-1 in the hippocampus. More importantly, PIAS3-mediated nNOS SUMOylation was required for activity-regulated ERK1/2 activation in nNOS-positive neurons and hippocampal LTP induction. Innovation and Conclusion: These findings indicated that network activity-regulated nNOS SUMOylation underlies excitatory synaptic LTP by facilitating nNOS-NO-ERK1/2 signal cascades.


Assuntos
Hipocampo/citologia , Chaperonas Moleculares/metabolismo , Óxido Nítrico Sintase Tipo I/química , Óxido Nítrico Sintase Tipo I/metabolismo , Proteínas Inibidoras de STAT Ativados/metabolismo , Proteína SUMO-1/metabolismo , Animais , Sítios de Ligação , Células Cultivadas , Hipocampo/metabolismo , Potenciação de Longa Duração , Sistema de Sinalização das MAP Quinases , Masculino , Modelos Moleculares , Chaperonas Moleculares/química , Óxido Nítrico/metabolismo , Ligação Proteica , Proteínas Inibidoras de STAT Ativados/química , Ratos , Sumoilação , Transmissão Sináptica
7.
Mol Neurobiol ; 51(2): 500-11, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24981431

RESUMO

The activation of postsynaptic N-methyl-D-aspartate (NMDA) receptors is required for long-term potentiation (LTP) of synaptic transmission. Postsynaptic density 95 (PSD-95) serves as a scaffold protein that tethers NMDA receptor subunits, kinases, and signal molecules. Our previous study proves that PSD-95 is a substrate of Src/Fyn and identifies Y523 on PSD-95 as a principal phosphorylation site. In this paper, we try to define an involvement and molecular consequences of PSD-95 phosphorylation by Src in NMDA receptor regulation. We found that either NMDA or chemical LTP induction leads to rapid phosphorylation of PSD-95 by Src in cultured cortical neurons. The phosphorylation of Y523 on PSD-95 potentiates NR2A-containing NMDA receptor current amplitude, implying an important role of Src-mediated PSD-95 phosphorylation in NMDA receptor activation. Comparing to wild-type PSD-95, overexpression of nonphosphorylatable mutant PSD-95Y523F attenuated the NMDA-stimulated NR2A tyrosine phosphorylation that enhances electrophysiological responses of NMDA receptor channels, while did not affect the membrane localization of NR2A subunits. PSD-95Y523D, a phosphomimetic mutant of PSD-95, induced NR2A tyrosine phosphorylation even if there was no NMDA treatment. In addition, the deficiency of Y523 phosphorylation on PSD-95 impaired the facilitatory effect of PSD-95 on the activation of Src and proline-rich tyrosine kinase 2 (Pyk2) and decreased the binding of Pyk2 with PSD-95. These results indicate that PSD-95 phosphorylation by Src facilitates the integration of Pyk2 to PSD-95 signal complex, the activation of Pyk2/Src, as well as the subsequent tyrosine phosphorylation of NR2A, which ultimately results in the upregulation of NMDA receptor function and synaptic transmission.


Assuntos
Quinase 2 de Adesão Focal/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas de Membrana/metabolismo , Receptores de N-Metil-D-Aspartato/biossíntese , Tirosina/metabolismo , Regulação para Cima/fisiologia , Quinases da Família src/metabolismo , Animais , Proteína 4 Homóloga a Disks-Large , Ativação Enzimática/fisiologia , Células HEK293 , Humanos , Fosforilação/fisiologia , Ratos , Ratos Sprague-Dawley
8.
Proc Natl Acad Sci U S A ; 111(38): 13990-5, 2014 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-25201974

RESUMO

Although kainate receptors play important roles in ischemic stroke, the molecular mechanisms underlying postischemic regulation of kainate receptors remain unclear. In this study we demonstrate that Src family kinases contribute to the potentiation of kainate receptor function. Brain ischemia and reperfusion induce rapid and sustained phosphorylation of the kainate receptor subunit GluK2 by Src in the rat hippocampus, implicating a critical role for Src-mediated GluK2 phosphorylation in ischemic brain injury. The NMDA and kainate receptors are involved in the tyrosine phosphorylation of GluK2. GluK2 binds to Src, and the tyrosine residue at position 590 (Y590) on GluK2 is a major site of phosphorylation by Src kinases. GluK2 phosphorylation at Y590 is responsible for increases in whole-cell currents and calcium influx in response to transient kainate stimulation. In addition, GluK2 phosphorylation at Y590 facilitates the endocytosis of GluK2 subunits, and the activation of JNK3 and its substrate c-Jun after long-term kainate treatment. Thus, Src phosphorylation of GluK2 plays an important role in the opening of kainate receptor channels and downstream proapoptosis signaling after brain ischemia. The present study reveals an additional mechanism for the regulation of GluK2-containing kainate receptors by Src family kinases, which may be of pathological significance in ischemic stroke.


Assuntos
Isquemia Encefálica/metabolismo , Hipocampo/metabolismo , Receptores de Ácido Caínico/metabolismo , Transdução de Sinais/fisiologia , Acidente Vascular Cerebral/metabolismo , Regulação para Cima/fisiologia , Animais , Isquemia Encefálica/genética , Isquemia Encefálica/patologia , Células HEK293 , Hipocampo/patologia , Humanos , Masculino , Proteína Quinase 10 Ativada por Mitógeno/genética , Proteína Quinase 10 Ativada por Mitógeno/metabolismo , Fosforilação , Proteínas Proto-Oncogênicas c-jun/genética , Proteínas Proto-Oncogênicas c-jun/metabolismo , Ratos , Ratos Sprague-Dawley , Receptores de Ácido Caínico/genética , Acidente Vascular Cerebral/genética , Acidente Vascular Cerebral/patologia , Tirosina/genética , Tirosina/metabolismo , Quinases da Família src/genética , Quinases da Família src/metabolismo , Receptor de GluK2 Cainato
9.
CNS Neurosci Ther ; 18(9): 754-61, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22709448

RESUMO

AIMS: Src family protein tyrosine kinases (SrcPTKs) have been implicated in the pathogenesis of brain ischemia and Alzheimer's disease (AD). In this study, we investigated whether Src and Fyn kinases, two major members of SrcPTKs in the brain, have distinct roles in the oxygen and glucose deprivation (OGD) and amyloid-ß peptide (Aß)-induced neuronal apoptosis. METHODS AND RESULTS: The DAPI staining and caspase-3 activation analysis showed that small interfering RNAs (siRNAs) knockdown of Src or Fyn attenuated SH-SY5Y cells apoptosis after OGD and Aß treatment. Fyn knockdown had a more potent neuroprotective effect than Src knockdown, suggesting a principal pathological significance of Fyn in brain ischemia and AD. Previously, we reported that brain ischemia promotes the phosphorylation of postsynaptic density protein 95 (PSD-95) at tyrosine 523 (Y523), which is associated with postsynaptic mechanisms of excitotoxicity. Here, immunoblot analysis indicated that not only OGD but also Aß incubation increased the PSD-95Y523 phosphorylation. Src knockdown, especially Fyn knockdown, significantly inhibited such phosphorylation. CONCLUSION: Fyn mediates PSD-95Y523 phosphorylation, which may be responsible for the excitotoxic signal cascades and neuronal apoptosis in brain ischemia and Aß neurotoxicity. Fyn is a potential therapeutic target for the treatment of ischemic stroke and AD.


Assuntos
Apoptose/fisiologia , Isquemia Encefálica/metabolismo , Técnicas de Silenciamento de Genes , Neurônios/enzimologia , Proteínas Proto-Oncogênicas c-fyn/metabolismo , Quinases da Família src/metabolismo , Peptídeos beta-Amiloides/metabolismo , Isquemia Encefálica/patologia , Hipóxia Celular , Células Cultivadas , Proteína 4 Homóloga a Disks-Large , Glucose/metabolismo , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas de Membrana/metabolismo , Neurônios/patologia , Fármacos Neuroprotetores/metabolismo , Neurotoxinas/metabolismo , Fragmentos de Peptídeos/metabolismo , RNA Interferente Pequeno , Receptores de N-Metil-D-Aspartato/metabolismo , Sistemas do Segundo Mensageiro/fisiologia , Transdução de Sinais/fisiologia
10.
FEBS Lett ; 586(9): 1259-64, 2012 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-22483987

RESUMO

Protein SUMOylation has been implicated in the pathogenesis of ischemic stroke. However, the underlying mechanisms remain unclear. Here, we found that global brain ischemia evokes a sustained elevation of GluK2 SUMOylation in the rat hippocampal CA1 region. Over-expression of wild-type GluK2, but not SUMOylation-deficient mutant, significantly increased the activity of MLK3 and JNK3 after kainate stimulation. SUMOylation deficiency attenuated the kainate-stimulated interaction between MLK3 and GluK2. In addition, inhibition of kainate-evoked GluK2 endocytosis decreased the activation of MLK3-JNK3 signaling and the binding of MLK3-GluK2 in cultured cortical neurons. These results suggest that the internalization of GluK2 following SUMO modification promotes its binding with MLK3, thereby activating the MLK3-JNK3 pathway, which may be responsible for ischemic neuronal cell death.


Assuntos
Ácido Caínico/farmacologia , MAP Quinase Quinase Quinases/metabolismo , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Proteína Quinase 10 Ativada por Mitógeno/metabolismo , Receptores de Ácido Caínico/metabolismo , Sumoilação/efeitos dos fármacos , Animais , Isquemia Encefálica/metabolismo , Isquemia Encefálica/patologia , Região CA1 Hipocampal/metabolismo , Região CA1 Hipocampal/patologia , Células COS , Linhagem Celular Tumoral , Chlorocebus aethiops , Ativação Enzimática/efeitos dos fármacos , Humanos , Masculino , Fosforilação/efeitos dos fármacos , Transporte Proteico/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley , MAP Quinase Quinase Quinase 11 Ativada por Mitógeno , Receptor de GluK2 Cainato
11.
Biochem J ; 417(1): 277-85, 2009 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-18721130

RESUMO

PSD (postsynaptic density)-95, a scaffold protein that tethers NMDA (N-methyl-D-aspartate) receptors to signal molecules, is implicated in pathological events resulting from excitotoxicity. The present study demonstrates that brain ischaemia and reperfusion increase the tyrosine phosphorylation of PSD-95 in the rat hippocampus. PP2, a specific inhibitor of SrcPTKs (Src family protein tyrosine kinases), prevents the ischaemia-induced increases not only in the tyrosine phosphorylation of PSD-95, but also in the interaction between PSD-95 and Src kinases. PSD-95 is phosphorylated either by purified Src/Fyn kinases in vitro or by co-expression of constitutively active Src/Fyn in COS7 cells. The results suggest that SrcPTKs are involved in PSD-95 phosphorylation. The single Tyr(523) mutation to phenylalanine (Y523F) reduces the Src/Fyn-mediated phosphorylation of PSD-95 in COS7 cells and in vitro. As shown with a rabbit polyclonal antibody against phospho-PSD-95 (Tyr(523)), Tyr(523) phosphorylation is responsible for the increased tyrosine phosphorylation of PSD-95 induced by ischaemia in the rat hippocampus. In cultured hippocampal neurons, overexpression of PSD-95 Y523F, but not PSD-95 Y533F, abolishes the facilitating effect of PSD-95 on the glutamate- or NMDA-mediated currents, implying that PSD-95 Tyr(523) phosphorylation contributes to the post-ischaemic over-activation of NMDA receptors. Thus the present study reveals an additional mechanism for the regulation of PSD-95 by tyrosine phosphorylation. This mechanism may be of pathological significance since it is associated with excitotoxicity in the ischaemic brain.


Assuntos
Isquemia Encefálica/fisiopatologia , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas de Membrana/metabolismo , Tirosina/metabolismo , Quinases da Família src/metabolismo , Animais , Sítios de Ligação/genética , Células COS , Células Cultivadas , Chlorocebus aethiops , Proteína 4 Homóloga a Disks-Large , Ácido Glutâmico/farmacologia , Hipocampo/citologia , Hipocampo/metabolismo , Immunoblotting , Imunoprecipitação , Peptídeos e Proteínas de Sinalização Intracelular/genética , Masculino , Proteínas de Membrana/genética , Mutação , N-Metilaspartato/farmacologia , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Neurônios/fisiologia , Técnicas de Patch-Clamp , Fosforilação , Ratos , Ratos Sprague-Dawley , Receptores de N-Metil-D-Aspartato/metabolismo , Receptores de N-Metil-D-Aspartato/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA